Abstract
Long-term depression (LTD) at parallel fiber (PF) to Purkinje neuron (PN) synapses in the cerebellum has been considered as a primary cellular mechanism for motor learning, although there are conflicting results. Aminergic neuromodulator norepinephrine (NE) is known to contribute to various types of learning including adaptation of the optokinetic response (OKR). Previous studies showed that OKR adaptation is accompanied by LTD occurrence in the cerebellar flocculus and that application of NE to the flocculus enhances OKR, while application of β-adrenergic receptor antagonist suppresses OKR adaptation. Our recent results demonstrated that NE facilitates induction of LTD through activation of β-adrenergic receptor in the flocculus. Thus, NE might contribute to OKR adaptation through facilitation of LTD induction. This monograph explains the involvement of NE in the cerebellar synaptic function and motor learning, primarily focusing on LTD and OKR adaptation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aiba, A., Kano, M., Chen, C., Stanton, M. E., Fox, G. D., Herrup, K., Zwingman, T. A., & Tonegawa, S. (1994). Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell, 7, 377–388.
Albus, J. (1971). A theory of cerebellar function. Mathematical Biosciences, 10, 25–61.
Bondok, A. A., Botros, K. G., & El-Mohandes, E. A. (1988). Fluorescence histochemical study of the localisation and distribution of β-adrenergic receptor sites in the spinal cord and cerebellum of the chicken. Journal of Anatomy, 160, 167–174.
Bylund, D. B., Eikenberg, D. C., Hieble, J. P., Langer, S. Z., Lefkowitz, R. J., Minneman, K. P., Molinoff, P. B., Ruffolo, R. R., & Trendelenburg, U. (1994). International union of pharmacology nomenclature of adrenoceptors. Pharmacological Reviews, 46, 121–136.
Carey, M., & Regehr, W. (2009). Noradrenergic control of associative synaptic plasticity by selective modulation of instructive signals. Neuron, 62, 112–122.
Cartford, M. C., Allgeier, C. A., & Bickford, P. C. (2002). The effects of β-noradrenergic receptor blockade on acquisition of eyeblink conditioning in 3-month-old F344 rats. Neurobiology of Learning and Memory, 78, 246–257.
Cheun, J. E., & Yeh, H. H. (1992). Modulation of GABAA receptor-activated current by norepinephrine in cerebellar Purkinje cells. Neuroscience, 51, 951–960.
D’Angelo, E., Rossi, P., Gall, D., Prestori, F., Nieus, T., Maffei, A., & Sola, E. (2005). Long-term potentiation of synaptic transmission at the mossy fiber-granule cell relay of cerebellum. Progress in Brain Research, 148, 69–80.
De Zeeuw, C. I., Hansel, C., Bian, F., Koekkoek, S. K., van Alphen, A. M., Linden, D. J., & Oberdick, J. (1998). Expression of a protein kinase C inhibitor in Purkinje cells blocks cerebellar LTD and adaptation of the vestibulo-ocular reflex. Neuron, 20, 495–508.
Dean, P., Porrill, J., Ekerot, C. F., & Jörntell, H. (2010). The cerebellar microcircuit as an adaptive filter: Experimental and computational evidence. Nature Reviews. Neuroscience, 11, 30–43.
Gao, Z., van Beugen, B. J., & De Zeeuw, C. I. (2012). Distributed synergistic plasticity and cerebellar learning. Nature Reviews. Neuroscience, 13, 619–635.
Gould, T. J. (1998). β-Adrenergic involvement in acquisition vs. extinction of a classically conditioned eye blink response in rabbits. Brain Research, 780, 174–177.
Guo, A., Feng, J. Y., Li, J., Ding, N., Li, Y. J., Qiu, D. L., Piao, R. L., & Chu, C. P. (2016). Effects of norepinephrine on spontaneous firing activity of cerebellar Purkinje cells in vivo in mice. Neuroscience Letters, 629, 262–266.
Hansel, C., Linden, D. J., & D'Angelo, E. (2001). Beyond parallel fiber LTD: The diversity of synaptic and non-synaptic plasticity in the cerebellum. Nature Neuroscience, 4, 467–475.
Herold, S., Hecker, C., Deitmer, J., & Brockhaus, J. (2005). α1-adrenergic modulation of synaptic input to Purkinje neurons in rat cerebellar brain slices. Journal of Neuroscience Research, 82, 571–579.
Hirano, T. (1990). Depression and potentiation of the synaptic transmission between a granule cell and a Purkinje cell in rat cerebellar culture. Neuroscience Letters, 119, 141–144.
Hirano, T. (1991). Differential pre- and postsynaptic mechanisms for synaptic potentiation and depression between a granule cell and a Purkinje cell in rat cerebellar culture. Synapse, 7, 321–323.
Hirano, T. (2013). Long-term depression and other synaptic plasticity in the cerebellum. Proceedings of the Japan Academy, 89, 183–195.
Hirano, T. (2014). Around LTD hypothesis in motor learning. Cerebellum, 12, 645–650.
Hirano, T. (2018). Regulation and interaction of multiple types of synaptic plasticity in a Purkinje neuron and their contribution to motor learning. Cerebellum, 17, 756–765.
Hirano, T., & Kawaguchi, S. (2014). Regulation and functional roles of rebound potentiation at cerebellar stellate cell-Purkinje cell synapse. Frontiers in Cellular Neuroscience, 8, 42. https://doi.org/10.3389/fncel.2014.00042
Hirono, M., & Obata, K. (2006). α-Adrenoceptive dual modulation of inhibitory GABAergic inputs to Purkinje cells in the mouse cerebellum. Journal of Neurophysiology, 95, 700–708.
Hoffer, B. J., Siggins, G. R., & Bloom, F. E. (1971). Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. II. Sensitivity of Purkinje cells to norepinephrine and related substances administered by microiontophoresis. Brain Research, 25, 523–534.
Inoshita, T., & Hirano, T. (2018). Occurrence of long-term depression in the cerebellar flocculus during adaptation of optokinetic response. eLife, 7, e36209. https://doi.org/10.7554/eLife.36209
Inoshita, T., & Hirano, T. (2021). Norepinephrine facilitates induction of long-term depression through β-adrenergic receptor at parallel fiber-to-Purkinje cell synapses in the flocculus. Neuroscience, 462, 141–150.
Ito, M. (1982). Cerebellar control of the vestibulo-ocular reflex--around the flocculus hypothesis. Annual Review of Neuroscience (Palo Alto, CA), 5, 275–296.
Ito, M. (2001). Cerebellar long-term depression: Characterization, signal transduction, and functional roles. Physiological Reviews, 81, 1143–1195.
Ito, M., & Nagao, S. (1991). Comparative aspects of horizontal ocular reflexes and their cerebellar adaptive control in vertebrates. Comparative Biochemistry and Physiology. C, 98, 221–228.
Ito, M., Sakurai, M., & Tongroach, P. (1982). Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. The Journal of Physiology, 324, 113–134.
Jörntell, H., & Ekerot, C. F. (2002). Reciprocal bidirectional plasticity of parallel fiber receptive fields in cerebellar Purkinje cells and their afferent interneurons. Neuron, 34, 797–806.
Kano, M., Rexhausen, U., Dreessen, J., & Konnerth, A. (1992). Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells. Nature, 1356, 601–604.
Kashiwabuchi, N., Ikeda, K., Araki, K., Hirano, T., Shibuki, K., Takayama, C., Inoue, Y., Kutsuwada, T., Yagi, T., Kang, Y., Aizawa, S., & Mishina, M. (1995). Disturbed motor coordination, Purkinje cell synapse formation and cerebellar long-term depression of mice defective in the δ2 subunit of the glutamate receptor channel. Cell, 81, 245–252.
Kawaguchi, S., & Hirano, T. (2002). Signaling cascade regulating long-term potentiation of GABAA receptor responsiveness in cerebellar Purkinje neurons. The Journal of Neuroscience, 22, 3969–3976.
Kitagawa, Y., Hirano, T., & Kawaguchi, S. (2009). Prediction and validation of a mechanism to control the threshold for inhibitory synaptic plasticity. Molecular Systems Biology, 5, 280. https://doi.org/10.1038/msb.2009.39
Kondo, S., & Marty, A. (1998). Differential effects of noradrenaline on evoked, spontaneous and miniature IPSCs in rat cerebellar stellate cells. The Journal of Physiology, 509, 233–243.
Lev-Ram, V., Wong, S., Storm, D., & Tsien, R. (2002). A new form of cerebellar long-term potentiation is postsynaptic and depends on nitric oxide but not cAMP. Proceedings of the National Academy USA, 99, 8389–8393.
Lin, A., Freund, R., & Palmer, M. (1991). Ethanol potentiation of GABA-induced electrophysiological responses in cerebellum: Requirement for catecholamine modulation. Neuroscience Letters, 122, 154–158.
Linden, D. J., Dickinson, M. H., Smeyne, M., & Connor, J. A. (1991). A long-term depression of AMPA currents in cultured cerebellar Purkinje neurons. Neuron, 7, 81–89.
Lippiello, P., Hoxha, E., Volpicelli, F., Duca, G., Tempia, F., & Miniaci, M. (2015). Noradrenergic modulation of the parallel fiber-Purkinje cell synapse in mouse cerebellum. Neuropharmacology, 89, 33–42.
Llano, I., & Gerschenfeld, H. (1993). β-adrenergic enhancement of inhibitory synaptic activity in rat cerebellar stellate and Purkinje cells. The Journal of Physiology, 468, 201–224.
Ly, R., Bouvier, G., Schonewille, M., Arabo, A., Rondi-Reig, L., Léna, C., Casado, M., De Zeeuw, C. I., & Feltz, A. (2013). T-type channel blockade impairs long-term potentiation at the parallel fiber–Purkinje cell synapse and cerebellar learning. Proceedings of the National Academy USA, 110, 20302–20307.
Marr, D. (1969). A theory of cerebellar cortex. The Journal of Physiology, 202, 437–470.
McConnell, M. J., Huang, Y. H., Datwani, A., & Shatz, C. J. (2009). H2-K(b) and H2-D(b) regulate cerebellar long-term depression and limit motor learning. Proceedings of the National Academy USA, 106, 6784–6789.
Miles, F. A., & Lisberger, S. G. (1981). Plasticity in the vestibulo-ocular reflex: A new hypothesis. Annual Review of Neuroscience, 4, 273–299.
Minneman, K. P., Pittman, R. N., & Molinoff, P. B. (1981). β-Adrenergic receptor subtypes: Properties, distribution, and regulation. Annual Review of Neuroscience (Palo Alto, CA), 4, 419–461.
Mori-Okamoto, J., & Tatsuno, J. (1988). Effects of noradrenaline on the responsiveness of cultured cerebellar neurons to excitatory amino acids. Brain Research, 448, 259–271.
Naka, F., Shiga, T., Yaguchi, M., & Okado, N. (2002). An enriched environment increases noradrenaline concentration in the mouse brain. Brain Research, 924, 124–126.
Papay, R., Gaivin, R., McCune, D. F., Rorabaugh, B. R., Macklin, W. B., McGrath, J. C., & Perez, D. M. (2004). Mouse α1B-adrenoreceptor is expressed in neurons and NG2 oligodendrocytes. The Journal of Comparative Neurology, 478, 1–10.
Papay, R., Gaivin, R., Jha, A., McCune, D. F., McGrath, J. C., Rodrigo, M. C., Simpson, P. C., Doze, V. A., & Perez, D. M. (2006). Localization of mouse α1A-adrenoreceptor (AR) in the brain: α1AAR is expressed in neurons, GABAergic interneurons, and NG2 oligodendrocyte progenitors. The Journal of Comparative Neurology, 497, 209–222.
Paschalis, A., Churchill, L., Marina, N., Kasymov, V., Gourine, A., & Ackland, G. (2009). β1-adrenoceptor distribution in the rat brain: An immunohistochemical study. Neuroscience Letters, 458, 84–88.
Philipp, M., & Hein, L. (2004). Adrenergic receptor knockout mice: Distinct functions of 9 receptor subtypes. Pharmacology & Therapeutics, 101, 65–74.
Saitow, F., Satake, S., Yamada, J., & Konishi, S. (2000). β-Adrenergic receptor-mediated presynaptic facilitation of inhibitory GABAergic transmission at cerebellar interneuron-Purkinje cell synapses. Journal of Neurophysiology, 84, 2016–2025.
Sakurai, M. (1987). Synaptic modification of parallel fibre-Purkinje cell transmission in in vitro Guinea-pig cerebellar slices. The Journal of Physiology, 394, 463–480.
Salin, P. A., Malenka, R. C., & Nicoll, R. A. (1996). Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron, 16, 797–803.
Sara, S. J. (2009). The locus coeruleus and noradrenergic modulation of cognition. Nature Reviews. Neuroscience, 10, 211–223.
Schambra, U. B., Mackensen, G. B., Stafford-Smith, M., Haines, D. E., & Schwinn, D. A. (2005). Neuron specific α-adrenergic receptor expression in human cerebellum: Implications for emerging cerebellar roles in neurologic disease. Neuroscience, 135, 507–523.
Schonewille, M., Belmeguenai, A., Koekkoek, S. K., Houtman, S. H., Boele, H. J., van Beugen, B. J., Gao, Z., Badura, A., Ohtsuki, G., Amerika, W. E., Hosy, E., Hoebeek, F. E., Elgersma, Y., Hansel, C., & De Zeeuw, C. I. (2010). Purkinje cell-specific knockout of the protein phosphatase PP2B impairs potentiation and cerebellar motor learning. Neuron, 67, 618–628.
Schonewille, M., Gao, Z., Boele, H. J., Veloz, M. F., Amerika, W. E., Simek, A. A., De Jeu, M. T., Steinberg, J. P., Takamiya, K., Hoebeek, F. E., Linden, D. J., Huganir, R. L., & De Zeeuw, C. I. (2011). Reevaluating the role of LTD in cerebellar motor learning. Neuron, 70, 43–50.
Schwarz, L. A., Miyamichi, K., Gao, X. J., Beier, K. T., Weissbourd, B., DeLoach, K. E., Ren, J., Ibanes, S., Malenka, R. C., Kremer, E. J., & Luo, L. (2015). Viral-genetic tracing of the input–output organization of a central noradrenaline circuit. Nature, 524, 88–92.
Small, K. M., McGraw, D. W., & Liggett, S. B. (2003). Pharmacology and physiology of human adrenergic receptor polymorphisms. Annual Review of Pharmacology and Toxicology, 43, 381–411.
Spreng, M., Cotecchia, S., & Schenk, F. (2001). A behavioral study of alpha-1b adrenergic receptor knockout mice: Increased reaction to novelty and selectively reduced learning capacities. Neurobiology of Learning and Memory, 75, 214–229.
Sugiyama, Y., Kawaguchi, S., & Hirano, T. (2008). mGluR1-mediated facilitation of long-term potentiation at inhibitory synapses on a cerebellar Purkinje neuron. The European Journal of Neuroscience, 27, 884–896.
Takeuchi, T., Ohtsuki, G., Yoshida, T., Fukaya, M., Wainai, T., Yamashita, M., Yamazaki, Y., Mori, H., Sakimura, K., Kawamoto, S., Watanabe, M., Hirano, T., & Mishina, M. (2008). Enhancement of both long-term depression induction and optokinetic response adaptation in mice lacking delphilin. PLoS One, 3, e2297. https://doi.org/10.1371/journal.pone.0002297
Talley, E. M., Rosin, D. L., Lee, A., Guyenet, P. G., & Lynch, K. R. (1996). Distribution of alpha2A-adrenergic receptor-like immunoreactivity in the rat central nervous system. The Journal of Comparative Neurology, 372, 111–134.
Tan, H. S., & Collewijn, H. (1992). Cholinergic and noradrenergic stimulation in the rabbit flocculus have synergistic facilitatory effects on optokinetic responses. Brain Research, 586, 130–134.
Tanaka, S., Kawaguchi, S., Shioi, G., & Hirano, T. (2013). Long-term potentiation of inhibitory synaptic transmission onto cerebellar Purkinje neurons contributes to adaptation of vestibulo-ocular reflex. The Journal of Neuroscience, 33, 17209–17220.
Tavares, A., Handy, D. E., Bogdanova, N. N., Rosene, D. L., & Gavras, H. (1996). Localization of α2A- and α2B-adrenergic receptor subtypes in brain. Hypertension, 27, 449–455.
Thompson, R. F. (2005). In search of memory traces. Annual Review of Psychology, 56, 1–23.
Titley, H. K., Watkins, G. V., Lin, C., Weiss, C., McCarthy, M., Disterhoft, J. F., & Hansel, C. (2020). Intrinsic excitability increase in cerebellar Purkinje cells after delay eye-blink conditioning in mice. The Journal of Neuroscience, 40, 2038–2046.
Tully, K., & Bolshakov, V. (2010). Emotional enhancement of memory: How norepinephrine enables synaptic plasticity. Molecular Brain, 3, 15.
van Neerven, J., Pomepeiano, O., Collewijn, H., & van der Steen, J. (1990). Injections of β-noradrenergic substances in the flocculus of rabbits affect adaptation of the VOR gain. Experimental Brain Research, 79, 249–260.
Wakita, R., Tanabe, S., Tabei, K., Funaki, A., Inoshita, T., & Hirano, T. (2017). Differential regulations of vestibulo-ocular reflex and optokinetic response by α- and β2-adrenergic receptors in the cerebellar flocculus. Scientific Reports, 7, 3944. https://doi.org/10.1038/s41598-017-04273-9
Wang, W., Nakadate, K., Masugi-Tokita, M., Shutoh, F., Aziz, W., Tarusawa, E., Lorincz, A., Molnár, E., Kesaf, S., Li, Y.-Q. Q., Fukazawa, Y., Nagao, S., & Shigemoto, R. (2014). Distinct cerebellar engrams in short-term and long-term motor learning. Proceedings of the National Academy USA, 111, 188–193.
Waterhouse, B. D., Moises, H. C., Yeh, H. H., & Woodward, D. J. (1982). Norepinephrine enhancement of inhibitory synaptic mechanisms in cerebellum and cerebral cortex: Mediation by beta adrenergic receptors. The Journal of Pharmacology and Experimental Therapeutics, 221, 495–506.
Watson, M., & McElligott, J. (1984). Cerebellar norepinephrine depletion and impaired acquisition of specific locomotor tasks in rats. Brain Research, 296, 129–138.
Welsh, J. P., Yamaguchi, H., Zeng, X. H., Kojo, M., Nakada, Y., Takagi, A., Sugimori, M., & Llinás, R. R. (2005). Normal motor learning during pharmacological prevention of Purkinje cell long-term depression. Proceedings of the National Academy USA, 102, 17166–17171.
Yamaguchi, K., Itohara, S., & Ito, M. (2016). Reassessment of long-term depression in cerebellar Purkinje cells in mice carrying mutated GluA2 C terminus. Proceedings of the National Academy USA, 113, 10192–10197.
Zikopoulos, B., & Dermon, C. R. (2005). Comparative anatomy of α2 and β adrenoreceptors in the adult and developing brain of the marine teleost red porgy (Pagrus Pagrus, Sparidae): 3H clonidine and 3H dihydroalprenolol quantitative autoradiography and receptor subtypes immunohistochemistry. The Journal of Comparative Neurology, 489, 217–240.
Acknowledgments
The authors thank Drs. S. Kawaguchi and E. Nakajima for helpful comments on this manuscript.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Hirano, T., Inoshita, T. (2021). Contribution of Norepinephrine to Cerebellar Long-Term Depression and Motor Learning. In: Mizusawa, H., Kakei, S. (eds) Cerebellum as a CNS Hub. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-75817-2_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-75817-2_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-75816-5
Online ISBN: 978-3-030-75817-2
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)