Skip to main content

Contribution of Norepinephrine to Cerebellar Long-Term Depression and Motor Learning

  • Conference paper
  • First Online:
Cerebellum as a CNS Hub

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

Long-term depression (LTD) at parallel fiber (PF) to Purkinje neuron (PN) synapses in the cerebellum has been considered as a primary cellular mechanism for motor learning, although there are conflicting results. Aminergic neuromodulator norepinephrine (NE) is known to contribute to various types of learning including adaptation of the optokinetic response (OKR). Previous studies showed that OKR adaptation is accompanied by LTD occurrence in the cerebellar flocculus and that application of NE to the flocculus enhances OKR, while application of β-adrenergic receptor antagonist suppresses OKR adaptation. Our recent results demonstrated that NE facilitates induction of LTD through activation of β-adrenergic receptor in the flocculus. Thus, NE might contribute to OKR adaptation through facilitation of LTD induction. This monograph explains the involvement of NE in the cerebellar synaptic function and motor learning, primarily focusing on LTD and OKR adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 245.03
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 329.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 329.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aiba, A., Kano, M., Chen, C., Stanton, M. E., Fox, G. D., Herrup, K., Zwingman, T. A., & Tonegawa, S. (1994). Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell, 7, 377–388.

    Google Scholar 

  • Albus, J. (1971). A theory of cerebellar function. Mathematical Biosciences, 10, 25–61.

    Article  Google Scholar 

  • Bondok, A. A., Botros, K. G., & El-Mohandes, E. A. (1988). Fluorescence histochemical study of the localisation and distribution of β-adrenergic receptor sites in the spinal cord and cerebellum of the chicken. Journal of Anatomy, 160, 167–174.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bylund, D. B., Eikenberg, D. C., Hieble, J. P., Langer, S. Z., Lefkowitz, R. J., Minneman, K. P., Molinoff, P. B., Ruffolo, R. R., & Trendelenburg, U. (1994). International union of pharmacology nomenclature of adrenoceptors. Pharmacological Reviews, 46, 121–136.

    CAS  PubMed  Google Scholar 

  • Carey, M., & Regehr, W. (2009). Noradrenergic control of associative synaptic plasticity by selective modulation of instructive signals. Neuron, 62, 112–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cartford, M. C., Allgeier, C. A., & Bickford, P. C. (2002). The effects of β-noradrenergic receptor blockade on acquisition of eyeblink conditioning in 3-month-old F344 rats. Neurobiology of Learning and Memory, 78, 246–257.

    Google Scholar 

  • Cheun, J. E., & Yeh, H. H. (1992). Modulation of GABAA receptor-activated current by norepinephrine in cerebellar Purkinje cells. Neuroscience, 51, 951–960.

    Article  CAS  PubMed  Google Scholar 

  • D’Angelo, E., Rossi, P., Gall, D., Prestori, F., Nieus, T., Maffei, A., & Sola, E. (2005). Long-term potentiation of synaptic transmission at the mossy fiber-granule cell relay of cerebellum. Progress in Brain Research, 148, 69–80.

    Article  PubMed  CAS  Google Scholar 

  • De Zeeuw, C. I., Hansel, C., Bian, F., Koekkoek, S. K., van Alphen, A. M., Linden, D. J., & Oberdick, J. (1998). Expression of a protein kinase C inhibitor in Purkinje cells blocks cerebellar LTD and adaptation of the vestibulo-ocular reflex. Neuron, 20, 495–508.

    Article  PubMed  Google Scholar 

  • Dean, P., Porrill, J., Ekerot, C. F., & Jörntell, H. (2010). The cerebellar microcircuit as an adaptive filter: Experimental and computational evidence. Nature Reviews. Neuroscience, 11, 30–43.

    Article  CAS  PubMed  Google Scholar 

  • Gao, Z., van Beugen, B. J., & De Zeeuw, C. I. (2012). Distributed synergistic plasticity and cerebellar learning. Nature Reviews. Neuroscience, 13, 619–635.

    Article  CAS  PubMed  Google Scholar 

  • Gould, T. J. (1998). β-Adrenergic involvement in acquisition vs. extinction of a classically conditioned eye blink response in rabbits. Brain Research, 780, 174–177.

    Article  CAS  PubMed  Google Scholar 

  • Guo, A., Feng, J. Y., Li, J., Ding, N., Li, Y. J., Qiu, D. L., Piao, R. L., & Chu, C. P. (2016). Effects of norepinephrine on spontaneous firing activity of cerebellar Purkinje cells in vivo in mice. Neuroscience Letters, 629, 262–266.

    Article  CAS  PubMed  Google Scholar 

  • Hansel, C., Linden, D. J., & D'Angelo, E. (2001). Beyond parallel fiber LTD: The diversity of synaptic and non-synaptic plasticity in the cerebellum. Nature Neuroscience, 4, 467–475.

    Article  CAS  PubMed  Google Scholar 

  • Herold, S., Hecker, C., Deitmer, J., & Brockhaus, J. (2005). α1-adrenergic modulation of synaptic input to Purkinje neurons in rat cerebellar brain slices. Journal of Neuroscience Research, 82, 571–579.

    Article  CAS  PubMed  Google Scholar 

  • Hirano, T. (1990). Depression and potentiation of the synaptic transmission between a granule cell and a Purkinje cell in rat cerebellar culture. Neuroscience Letters, 119, 141–144.

    Article  CAS  PubMed  Google Scholar 

  • Hirano, T. (1991). Differential pre- and postsynaptic mechanisms for synaptic potentiation and depression between a granule cell and a Purkinje cell in rat cerebellar culture. Synapse, 7, 321–323.

    Article  CAS  PubMed  Google Scholar 

  • Hirano, T. (2013). Long-term depression and other synaptic plasticity in the cerebellum. Proceedings of the Japan Academy, 89, 183–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirano, T. (2014). Around LTD hypothesis in motor learning. Cerebellum, 12, 645–650.

    Article  Google Scholar 

  • Hirano, T. (2018). Regulation and interaction of multiple types of synaptic plasticity in a Purkinje neuron and their contribution to motor learning. Cerebellum, 17, 756–765.

    Article  PubMed  Google Scholar 

  • Hirano, T., & Kawaguchi, S. (2014). Regulation and functional roles of rebound potentiation at cerebellar stellate cell-Purkinje cell synapse. Frontiers in Cellular Neuroscience, 8, 42. https://doi.org/10.3389/fncel.2014.00042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirono, M., & Obata, K. (2006). α-Adrenoceptive dual modulation of inhibitory GABAergic inputs to Purkinje cells in the mouse cerebellum. Journal of Neurophysiology, 95, 700–708.

    Article  CAS  PubMed  Google Scholar 

  • Hoffer, B. J., Siggins, G. R., & Bloom, F. E. (1971). Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. II. Sensitivity of Purkinje cells to norepinephrine and related substances administered by microiontophoresis. Brain Research, 25, 523–534.

    Article  CAS  PubMed  Google Scholar 

  • Inoshita, T., & Hirano, T. (2018). Occurrence of long-term depression in the cerebellar flocculus during adaptation of optokinetic response. eLife, 7, e36209. https://doi.org/10.7554/eLife.36209

    Article  PubMed  PubMed Central  Google Scholar 

  • Inoshita, T., & Hirano, T. (2021). Norepinephrine facilitates induction of long-term depression through β-adrenergic receptor at parallel fiber-to-Purkinje cell synapses in the flocculus. Neuroscience, 462, 141–150.

    Google Scholar 

  • Ito, M. (1982). Cerebellar control of the vestibulo-ocular reflex--around the flocculus hypothesis. Annual Review of Neuroscience (Palo Alto, CA), 5, 275–296.

    Article  CAS  Google Scholar 

  • Ito, M. (2001). Cerebellar long-term depression: Characterization, signal transduction, and functional roles. Physiological Reviews, 81, 1143–1195.

    Article  CAS  PubMed  Google Scholar 

  • Ito, M., & Nagao, S. (1991). Comparative aspects of horizontal ocular reflexes and their cerebellar adaptive control in vertebrates. Comparative Biochemistry and Physiology. C, 98, 221–228.

    Article  CAS  Google Scholar 

  • Ito, M., Sakurai, M., & Tongroach, P. (1982). Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. The Journal of Physiology, 324, 113–134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jörntell, H., & Ekerot, C. F. (2002). Reciprocal bidirectional plasticity of parallel fiber receptive fields in cerebellar Purkinje cells and their afferent interneurons. Neuron, 34, 797–806.

    Article  PubMed  Google Scholar 

  • Kano, M., Rexhausen, U., Dreessen, J., & Konnerth, A. (1992). Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells. Nature, 1356, 601–604.

    Article  Google Scholar 

  • Kashiwabuchi, N., Ikeda, K., Araki, K., Hirano, T., Shibuki, K., Takayama, C., Inoue, Y., Kutsuwada, T., Yagi, T., Kang, Y., Aizawa, S., & Mishina, M. (1995). Disturbed motor coordination, Purkinje cell synapse formation and cerebellar long-term depression of mice defective in the δ2 subunit of the glutamate receptor channel. Cell, 81, 245–252.

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi, S., & Hirano, T. (2002). Signaling cascade regulating long-term potentiation of GABAA receptor responsiveness in cerebellar Purkinje neurons. The Journal of Neuroscience, 22, 3969–3976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitagawa, Y., Hirano, T., & Kawaguchi, S. (2009). Prediction and validation of a mechanism to control the threshold for inhibitory synaptic plasticity. Molecular Systems Biology, 5, 280. https://doi.org/10.1038/msb.2009.39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo, S., & Marty, A. (1998). Differential effects of noradrenaline on evoked, spontaneous and miniature IPSCs in rat cerebellar stellate cells. The Journal of Physiology, 509, 233–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lev-Ram, V., Wong, S., Storm, D., & Tsien, R. (2002). A new form of cerebellar long-term potentiation is postsynaptic and depends on nitric oxide but not cAMP. Proceedings of the National Academy USA, 99, 8389–8393.

    Article  CAS  Google Scholar 

  • Lin, A., Freund, R., & Palmer, M. (1991). Ethanol potentiation of GABA-induced electrophysiological responses in cerebellum: Requirement for catecholamine modulation. Neuroscience Letters, 122, 154–158.

    Article  CAS  PubMed  Google Scholar 

  • Linden, D. J., Dickinson, M. H., Smeyne, M., & Connor, J. A. (1991). A long-term depression of AMPA currents in cultured cerebellar Purkinje neurons. Neuron, 7, 81–89.

    Article  CAS  PubMed  Google Scholar 

  • Lippiello, P., Hoxha, E., Volpicelli, F., Duca, G., Tempia, F., & Miniaci, M. (2015). Noradrenergic modulation of the parallel fiber-Purkinje cell synapse in mouse cerebellum. Neuropharmacology, 89, 33–42.

    Article  CAS  PubMed  Google Scholar 

  • Llano, I., & Gerschenfeld, H. (1993). β-adrenergic enhancement of inhibitory synaptic activity in rat cerebellar stellate and Purkinje cells. The Journal of Physiology, 468, 201–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ly, R., Bouvier, G., Schonewille, M., Arabo, A., Rondi-Reig, L., Léna, C., Casado, M., De Zeeuw, C. I., & Feltz, A. (2013). T-type channel blockade impairs long-term potentiation at the parallel fiber–Purkinje cell synapse and cerebellar learning. Proceedings of the National Academy USA, 110, 20302–20307.

    Article  CAS  Google Scholar 

  • Marr, D. (1969). A theory of cerebellar cortex. The Journal of Physiology, 202, 437–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McConnell, M. J., Huang, Y. H., Datwani, A., & Shatz, C. J. (2009). H2-K(b) and H2-D(b) regulate cerebellar long-term depression and limit motor learning. Proceedings of the National Academy USA, 106, 6784–6789.

    Article  CAS  Google Scholar 

  • Miles, F. A., & Lisberger, S. G. (1981). Plasticity in the vestibulo-ocular reflex: A new hypothesis. Annual Review of Neuroscience, 4, 273–299.

    Article  CAS  PubMed  Google Scholar 

  • Minneman, K. P., Pittman, R. N., & Molinoff, P. B. (1981). β-Adrenergic receptor subtypes: Properties, distribution, and regulation. Annual Review of Neuroscience (Palo Alto, CA), 4, 419–461.

    Article  CAS  Google Scholar 

  • Mori-Okamoto, J., & Tatsuno, J. (1988). Effects of noradrenaline on the responsiveness of cultured cerebellar neurons to excitatory amino acids. Brain Research, 448, 259–271.

    Article  CAS  PubMed  Google Scholar 

  • Naka, F., Shiga, T., Yaguchi, M., & Okado, N. (2002). An enriched environment increases noradrenaline concentration in the mouse brain. Brain Research, 924, 124–126.

    Article  CAS  PubMed  Google Scholar 

  • Papay, R., Gaivin, R., McCune, D. F., Rorabaugh, B. R., Macklin, W. B., McGrath, J. C., & Perez, D. M. (2004). Mouse α1B-adrenoreceptor is expressed in neurons and NG2 oligodendrocytes. The Journal of Comparative Neurology, 478, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Papay, R., Gaivin, R., Jha, A., McCune, D. F., McGrath, J. C., Rodrigo, M. C., Simpson, P. C., Doze, V. A., & Perez, D. M. (2006). Localization of mouse α1A-adrenoreceptor (AR) in the brain: α1AAR is expressed in neurons, GABAergic interneurons, and NG2 oligodendrocyte progenitors. The Journal of Comparative Neurology, 497, 209–222.

    Article  CAS  PubMed  Google Scholar 

  • Paschalis, A., Churchill, L., Marina, N., Kasymov, V., Gourine, A., & Ackland, G. (2009). β1-adrenoceptor distribution in the rat brain: An immunohistochemical study. Neuroscience Letters, 458, 84–88.

    Article  CAS  PubMed  Google Scholar 

  • Philipp, M., & Hein, L. (2004). Adrenergic receptor knockout mice: Distinct functions of 9 receptor subtypes. Pharmacology & Therapeutics, 101, 65–74.

    Article  CAS  Google Scholar 

  • Saitow, F., Satake, S., Yamada, J., & Konishi, S. (2000). β-Adrenergic receptor-mediated presynaptic facilitation of inhibitory GABAergic transmission at cerebellar interneuron-Purkinje cell synapses. Journal of Neurophysiology, 84, 2016–2025.

    Article  CAS  PubMed  Google Scholar 

  • Sakurai, M. (1987). Synaptic modification of parallel fibre-Purkinje cell transmission in in vitro Guinea-pig cerebellar slices. The Journal of Physiology, 394, 463–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salin, P. A., Malenka, R. C., & Nicoll, R. A. (1996). Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron, 16, 797–803.

    Article  CAS  PubMed  Google Scholar 

  • Sara, S. J. (2009). The locus coeruleus and noradrenergic modulation of cognition. Nature Reviews. Neuroscience, 10, 211–223.

    Article  CAS  PubMed  Google Scholar 

  • Schambra, U. B., Mackensen, G. B., Stafford-Smith, M., Haines, D. E., & Schwinn, D. A. (2005). Neuron specific α-adrenergic receptor expression in human cerebellum: Implications for emerging cerebellar roles in neurologic disease. Neuroscience, 135, 507–523.

    Article  CAS  PubMed  Google Scholar 

  • Schonewille, M., Belmeguenai, A., Koekkoek, S. K., Houtman, S. H., Boele, H. J., van Beugen, B. J., Gao, Z., Badura, A., Ohtsuki, G., Amerika, W. E., Hosy, E., Hoebeek, F. E., Elgersma, Y., Hansel, C., & De Zeeuw, C. I. (2010). Purkinje cell-specific knockout of the protein phosphatase PP2B impairs potentiation and cerebellar motor learning. Neuron, 67, 618–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schonewille, M., Gao, Z., Boele, H. J., Veloz, M. F., Amerika, W. E., Simek, A. A., De Jeu, M. T., Steinberg, J. P., Takamiya, K., Hoebeek, F. E., Linden, D. J., Huganir, R. L., & De Zeeuw, C. I. (2011). Reevaluating the role of LTD in cerebellar motor learning. Neuron, 70, 43–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz, L. A., Miyamichi, K., Gao, X. J., Beier, K. T., Weissbourd, B., DeLoach, K. E., Ren, J., Ibanes, S., Malenka, R. C., Kremer, E. J., & Luo, L. (2015). Viral-genetic tracing of the input–output organization of a central noradrenaline circuit. Nature, 524, 88–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Small, K. M., McGraw, D. W., & Liggett, S. B. (2003). Pharmacology and physiology of human adrenergic receptor polymorphisms. Annual Review of Pharmacology and Toxicology, 43, 381–411.

    Article  CAS  PubMed  Google Scholar 

  • Spreng, M., Cotecchia, S., & Schenk, F. (2001). A behavioral study of alpha-1b adrenergic receptor knockout mice: Increased reaction to novelty and selectively reduced learning capacities. Neurobiology of Learning and Memory, 75, 214–229.

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama, Y., Kawaguchi, S., & Hirano, T. (2008). mGluR1-mediated facilitation of long-term potentiation at inhibitory synapses on a cerebellar Purkinje neuron. The European Journal of Neuroscience, 27, 884–896.

    Article  PubMed  Google Scholar 

  • Takeuchi, T., Ohtsuki, G., Yoshida, T., Fukaya, M., Wainai, T., Yamashita, M., Yamazaki, Y., Mori, H., Sakimura, K., Kawamoto, S., Watanabe, M., Hirano, T., & Mishina, M. (2008). Enhancement of both long-term depression induction and optokinetic response adaptation in mice lacking delphilin. PLoS One, 3, e2297. https://doi.org/10.1371/journal.pone.0002297

  • Talley, E. M., Rosin, D. L., Lee, A., Guyenet, P. G., & Lynch, K. R. (1996). Distribution of alpha2A-adrenergic receptor-like immunoreactivity in the rat central nervous system. The Journal of Comparative Neurology, 372, 111–134.

    Google Scholar 

  • Tan, H. S., & Collewijn, H. (1992). Cholinergic and noradrenergic stimulation in the rabbit flocculus have synergistic facilitatory effects on optokinetic responses. Brain Research, 586, 130–134.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, S., Kawaguchi, S., Shioi, G., & Hirano, T. (2013). Long-term potentiation of inhibitory synaptic transmission onto cerebellar Purkinje neurons contributes to adaptation of vestibulo-ocular reflex. The Journal of Neuroscience, 33, 17209–17220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavares, A., Handy, D. E., Bogdanova, N. N., Rosene, D. L., & Gavras, H. (1996). Localization of α2A- and α2B-adrenergic receptor subtypes in brain. Hypertension, 27, 449–455.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, R. F. (2005). In search of memory traces. Annual Review of Psychology, 56, 1–23.

    Article  PubMed  Google Scholar 

  • Titley, H. K., Watkins, G. V., Lin, C., Weiss, C., McCarthy, M., Disterhoft, J. F., & Hansel, C. (2020). Intrinsic excitability increase in cerebellar Purkinje cells after delay eye-blink conditioning in mice. The Journal of Neuroscience, 40, 2038–2046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tully, K., & Bolshakov, V. (2010). Emotional enhancement of memory: How norepinephrine enables synaptic plasticity. Molecular Brain, 3, 15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Neerven, J., Pomepeiano, O., Collewijn, H., & van der Steen, J. (1990). Injections of β-noradrenergic substances in the flocculus of rabbits affect adaptation of the VOR gain. Experimental Brain Research, 79, 249–260.

    Article  PubMed  Google Scholar 

  • Wakita, R., Tanabe, S., Tabei, K., Funaki, A., Inoshita, T., & Hirano, T. (2017). Differential regulations of vestibulo-ocular reflex and optokinetic response by α- and β2-adrenergic receptors in the cerebellar flocculus. Scientific Reports, 7, 3944. https://doi.org/10.1038/s41598-017-04273-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, W., Nakadate, K., Masugi-Tokita, M., Shutoh, F., Aziz, W., Tarusawa, E., Lorincz, A., Molnár, E., Kesaf, S., Li, Y.-Q. Q., Fukazawa, Y., Nagao, S., & Shigemoto, R. (2014). Distinct cerebellar engrams in short-term and long-term motor learning. Proceedings of the National Academy USA, 111, 188–193.

    Google Scholar 

  • Waterhouse, B. D., Moises, H. C., Yeh, H. H., & Woodward, D. J. (1982). Norepinephrine enhancement of inhibitory synaptic mechanisms in cerebellum and cerebral cortex: Mediation by beta adrenergic receptors. The Journal of Pharmacology and Experimental Therapeutics, 221, 495–506.

    CAS  PubMed  Google Scholar 

  • Watson, M., & McElligott, J. (1984). Cerebellar norepinephrine depletion and impaired acquisition of specific locomotor tasks in rats. Brain Research, 296, 129–138.

    Article  CAS  PubMed  Google Scholar 

  • Welsh, J. P., Yamaguchi, H., Zeng, X. H., Kojo, M., Nakada, Y., Takagi, A., Sugimori, M., & Llinás, R. R. (2005). Normal motor learning during pharmacological prevention of Purkinje cell long-term depression. Proceedings of the National Academy USA, 102, 17166–17171.

    Article  CAS  Google Scholar 

  • Yamaguchi, K., Itohara, S., & Ito, M. (2016). Reassessment of long-term depression in cerebellar Purkinje cells in mice carrying mutated GluA2 C terminus. Proceedings of the National Academy USA, 113, 10192–10197.

    Article  CAS  Google Scholar 

  • Zikopoulos, B., & Dermon, C. R. (2005). Comparative anatomy of α2 and β adrenoreceptors in the adult and developing brain of the marine teleost red porgy (Pagrus Pagrus, Sparidae): 3H clonidine and 3H dihydroalprenolol quantitative autoradiography and receptor subtypes immunohistochemistry. The Journal of Comparative Neurology, 489, 217–240.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. S. Kawaguchi and E. Nakajima for helpful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hirano, T., Inoshita, T. (2021). Contribution of Norepinephrine to Cerebellar Long-Term Depression and Motor Learning. In: Mizusawa, H., Kakei, S. (eds) Cerebellum as a CNS Hub. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-75817-2_16

Download citation

Publish with us

Policies and ethics