Skip to main content

Timing in Purkinje Cells and a Novel Learning Mechanism

  • Conference paper
  • First Online:
Cerebellum as a CNS Hub

Abstract

During eyeblink conditioning, Purkinje cells that control the eyelid learn to respond with a pause in simple spike firing to the conditional stimulus. This conditional pause response (CR) in the Purkinje cell is adaptively timed and drives the overt response. Recent results show that the Purkinje cell CR does not depend on modification of synaptic strength such as long-term depression but on a novel mechanism that enables the cell to learn the temporal interval between conditional and unconditional stimuli and to time of the CR accordingly. The Purkinje cell CR is elicited by glutamate acting on metabotropic receptors (mGluR7) and may involve inwardly rectifying potassium channels (Kir3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balsam, P. D., Drew, M. R., & Gallistel, C. R. (2010). Time and associative learning. Comparative Cognition & Behavior Reviews, 5, 1–22.

    Article  Google Scholar 

  • Braitenberg, V. (1967). Is the cerebellar cortex a biological clock in the millisecond range? Progress in Brain Research, 25, 334–346.

    Article  CAS  Google Scholar 

  • Cajal, S. (1894). La fine structure des centres nerveux. Proceedings of the Royal Society of London, 55, 444–468.

    Article  Google Scholar 

  • Dascal, N., & Kahanovitch, U. (2015). The roles of Gbetagamma and Galpha in gating and regulation of GIRK channels. International Review of Neurobiology, 123, 27–85. https://doi.org/10.1016/bs.irn.2015.06.001

    Article  CAS  PubMed  Google Scholar 

  • Desmond, J. E., & Moore, J. W. (1988). Adaptive timing in neural networks: The conditioned response. Biology and Cybernetics, 58(6), 405–415.

    Article  CAS  Google Scholar 

  • Doupnik, C. A. (2015). RGS redundancy and implications in GPCR-GIRK signaling. International Review of Neurobiology, 123, 87–116. https://doi.org/10.1016/bs.irn.2015.05.010

    Article  CAS  PubMed  Google Scholar 

  • Eccles, J. C., Ito, M., & Szentagothai, J. (1967). The cerebellum as a neuronal machine. Springer-Verlag.

    Book  Google Scholar 

  • Ekerot, C. F., & Kano, M. (1989). Stimulation parameters influencing climbing fibre induced long-term depression of parallel fibre synapses. Neuroscience Research, 6(3), 264–268.

    Article  CAS  Google Scholar 

  • Fiala, J. C., Grossberg, S., & Bullock, D. (1996). Metabotropic glutamate receptor activation in cerebellar Purkinje cells as substrate for adaptive timing of the classically conditioned eye-blink response. Journal of Neuroscience, 16(11), 3760–3774.

    Article  CAS  Google Scholar 

  • Freeman, J. H. (2015). Cerebellar learning mechanisms. Brain Research, 1621, 260–269. https://doi.org/10.1016/j.brainres.2014.09.062

    Article  CAS  PubMed  Google Scholar 

  • Gallistel, C. (1990). The organization of learning. Bradford Books/MIT Press.

    Google Scholar 

  • Gallistel, C. R., & Matzel, L. D. (2013). The neuroscience of learning: Beyond the hebbian synapse. Annual Review of Psychology, 64, 169–200. https://doi.org/10.1146/annurev-psych-113011-143807

    Article  CAS  PubMed  Google Scholar 

  • Gallistel, C, Johansson, F, Jirenhed, D-A, Rasmussen, A, Ricci, M, Hesslow, G. (2020). Quantitative properties of the creation and activation of a cell-intrinsic engram. bioRxiv 20200317995258. https://doi.org/10.1101/2020.03.17.995258.

  • Gormezano, I., & Moore, J. W. (1969). Classical conditioning. In M. H. Marx (Ed.), Learning: processes. Macmillan.

    Google Scholar 

  • Hansel, C., Linden, D. J., & D'Angelo, E. (2001). Beyond parallel fiber LTD: The diversity of synaptic and non-synaptic plasticity in the cerebellum. Nature Neuroscience, 4(5), 467–475. https://doi.org/10.1038/8741987419. [pii].

    Article  CAS  PubMed  Google Scholar 

  • Hebb, D. O. (1949). The organization of behavior; a neuropsychological theory. Wiley.

    Google Scholar 

  • Hesslow, G. (1994a). Correspondence between climbing fibre input and motor output in eyeblink-related areas in cat cerebellar cortex. Journal of Physiology (London), 476(2), 229–244.

    Article  CAS  Google Scholar 

  • Hesslow, G. (1994b). Inhibition of classically conditioned eyeblink responses by stimulation of the cerebellar cortex in the decerebrate cat. Journal of Physiology (London), 476(2), 245–256.

    Article  CAS  Google Scholar 

  • Hesslow, G., & Ivarsson, M. (1994). Suppression of cerebellar Purkinje cells during conditioned responses in ferrets. Neuroreport, 5(5), 649–652.

    Article  CAS  Google Scholar 

  • Hesslow, G., & Yeo, C. H. (2002). The functional anatomy of skeletal conditioning. In J. W. Moore (Ed.), A Neuroscientist's guide to classical conditioning (pp. 86–146). Springer-Verlag.

    Chapter  Google Scholar 

  • Hesslow, G., Jirenhed, D.-A., Rasmussen, A., & Johansson, F. (2013). Classical conditioning of motor responses: What is the learning mechanism? Neural Networks, 47, 81–87. https://doi.org/10.1016/j.neunet.2013.03.013

    Article  PubMed  Google Scholar 

  • Hoehler, F. K., & Leonard, D. W. (1976). Double responding in classical nictitating membrane conditioning with single-CS dual-ISI training. The Pavlovian Journal of Biological Science, 11, 180–190.

    Article  CAS  Google Scholar 

  • Ito, M. (2001). Cerebellar long-term depression: Characterization, signal transduction, and functional roles. Physiological Reviews, 81(3), 1143–1195.

    Article  CAS  Google Scholar 

  • Ito, M., Sakurai, M., & Tongroach, P. (1982). Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. Journal of Physiology (London), 324, 113–134.

    Article  CAS  Google Scholar 

  • Ito, M., Yamaguchi, K., Nagao, S., & Yamazaki, T. (2014). Long-term depression as a model of cerebellar plasticity. Progress in Brain Research, 210, 1–30. https://doi.org/10.1016/B978-0-444-63356-9.00001-7

    Article  PubMed  Google Scholar 

  • Ivry, R. B., & Keele, S. W. (1989). Timing functions of the cerebellum. Journal of Cognitive Neuroscience, 1(2), 136–152. https://doi.org/10.1162/jocn.1989.1.2.136

    Article  CAS  PubMed  Google Scholar 

  • Jirenhed, D. A., & Hesslow, G. (2011). Learning stimulus intervals--adaptive timing of conditioned purkinje cell responses. Cerebellum, 10(3), 523–535. https://doi.org/10.1007/s12311-011-0264-3

    Article  PubMed  Google Scholar 

  • Jirenhed, D. A., & Hesslow, G. (2016). Are purkinje cell pauses drivers of classically conditioned blink responses? Cerebellum, 15(4), 526–534. https://doi.org/10.1007/s12311-015-0722-4

    Article  PubMed  Google Scholar 

  • Jirenhed, D. A., Bengtsson, F., & Hesslow, G. (2007). Acquisition, extinction, and reacquisition of a cerebellar cortical memory trace. The Journal of Neuroscience, 27(10), 2493–2502. https://doi.org/10.1523/JNEUROSCI.4202-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jirenhed, D.-A., Rasmussen, A., Johansson, F., & Hesslow, G. (2017). Learned response sequences in cerebellar Purkinje cells. Proceedings of the National Academy of Sciences of the United States of America, 114(23), 6127–6132. https://doi.org/10.1073/pnas.1621132114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson, F., & Hesslow, G. (2020). Kir3 channel blockade in the cerebellar cortex suppresses performance of classically conditioned purkinje cell responses. Scientific Reports, 10(1), 15654. https://doi.org/10.1038/s41598-020-72581-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson, F., Jirenhed, D. A., Rasmussen, A., Zucca, R., & Hesslow, G. (2014). Memory trace and timing mechanism localized to cerebellar purkinje cells. Proceedings of the National Academy of Sciences of the United States of America, 111(41), 14930–14934. https://doi.org/10.1073/pnas.1415371111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson, F., Carlsson, H. A. E., Rasmussen, A., Yeo, C. H., & Hesslow, G. (2015). Activation of a temporal memory in purkinje cells by the mGluR7 receptor. Cell Reports, 13(9), 1741–1746. https://doi.org/10.1016/j.celrep.2015.10.047

    Article  CAS  PubMed  Google Scholar 

  • Johansson, F., Jirenhed, D. A., Rasmussen, A., Zucca, R., & Hesslow, G. (2018). Absence of parallel fibre to purkinje cell LTD during eyeblink conditioning. Scientific Reports, 8(1), 14777. https://doi.org/10.1038/s41598-018-32791-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jörntell, H., & Ekerot, C.-F. (2002). Reciprocal bidirectional plasticity of parallel fiber receptive fields in cerebellar purkinje cells and their afferent interneurons. Neuron, 34, 797–806.

    Article  Google Scholar 

  • Jörntell, H., Bengtsson, F., Schonewille, M., & De Zeeuw, C. I. (2010). Cerebellar molecular layer interneurons – computational properties and roles in learning. Trends in Neurosciences, 33(11), 524–532. https://doi.org/10.1016/j.tins.2010.08.004

    Article  CAS  PubMed  Google Scholar 

  • Jueptner, M., Flerich, L., Weiller, C., Mueller, S. P., & Diener, H. C. (1996). The human cerebellum and temporal information processing—results from a PET experiment. Neuroreport, 7, 2761–2765.

    Article  CAS  Google Scholar 

  • Karachot, L., Kado, R. T., & Ito, M. (1995). Stimulus parameters for induction of long-term depression in in vitro rat purkinje cells. Neuroscience Research, 21, 161–168.

    Article  Google Scholar 

  • Kehoe, E. J., & Joscelyne, A. (2005). Temporally specific extinction of conditioned responses in the rabbit ( Oryctolagus cuniculus ) nictitating membrane preparation. Behavioral Neuroscience, 119, 1011–1022.

    Article  Google Scholar 

  • Kehoe, E. J., & Macrae, M. (2002). Fundamental behavioral methods and findings in classical conditioning. In J. W. Moore (Ed.), A neuroscientist’s guide to classical conditioning (pp. 171–231). Springer-Verlag.

    Chapter  Google Scholar 

  • Longley, M., & Yeo, C. H. (2014). Distribution of neural plasticity in cerebellum- dependent motor learning. Progress in Brain Research, 210, 79–101.

    Article  Google Scholar 

  • Mackintosh, N. J. (1974). The psychology of animal learning. Academic Press.

    Google Scholar 

  • Marr, D. (1969). A theory of cerebellar cortex. Journal of Physiology (London), 202(2), 437–470.

    Article  CAS  Google Scholar 

  • Mauk, M. D., & Buonomano, D. V. (2004). The neural basis of temporal processing. Annual Review of Neuroscience, 27, 307–340.

    Article  CAS  Google Scholar 

  • McCormick, D. A., Lavond, D., Clark, G. A., Kettner, R. E., Rising, C. E., & Thompson, R. F. (1981). The engram found? Role of the cerebellum in classical conditioning of nictitating membrane and eyelid responses. Bulletin of the Psychonomic Society, 18(3), 103–105.

    Article  Google Scholar 

  • Medina, J. F., & Mauk, M. D. (2000). Computer simulation of cerebellar information processing. Nature Neuroscience, 3, 1205–1211.

    Article  CAS  Google Scholar 

  • Millenson, J. R., Kehoe, E. J., & Gormezano, I. (1977). Classical conditioning of the rabbit's nictitating membrane response under fixed and mixed CS-US intervals. Learning and Motivation, 8, 351–366.

    Article  Google Scholar 

  • Niswender, C. M., & Conn, P. J. (2010). Metabotropic glutamate receptors: Physiology, pharmacology, and disease. Annual Review of Pharmacology and Toxicology, 50, 295–322. https://doi.org/10.1146/annurev.pharmtox.011008.145533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen, A., Jirenhed, D.-A., Zucca, R., Johansson, F., Svensson, P., & Hesslow, G. (2013). Number of spikes in climbing fibers determines the direction of cerebellar learning. Journal of Neuroscience, 33(33), 13436–13440. https://doi.org/10.1523/JNEUROSCI.1527-13.2013

    Article  CAS  PubMed  Google Scholar 

  • Schonewille, M., Gao, Z., Boele, H. J., Veloz, M. F., Amerika, W. E., Simek, A. A., De Jeu, M. T., Steinberg, J. P., Takamiya, K., Hoebeek, F. E., Linden, D. J., Huganir, R. L., & De Zeeuw, C. I. (2011). Reevaluating the role of LTD in cerebellar motor learning. Neuron, 70(1), 43–50. https://doi.org/10.1016/j.neuron.2011.02.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steuber, V., & Willshaw, D. (2004). A biophysical model of synaptic delay learning and temporal pattern recognition in a cerebellar purkinje cell. Journal of Computational Neuroscience, 17, 149–164.

    Article  Google Scholar 

  • Svensson, P., Ivarsson, M., & Hesslow, G. (1997). Effect of varying the intensity and train frequency of forelimb and cerebellar mossy fiber conditioned stimuli on the latency of conditioned eye-blink responses in decerebrate ferrets. Learning & Memory, 4(1), 105–115.

    Article  CAS  Google Scholar 

  • Svensson, P., Jirenhed, D. A., Bengtsson, F., & Hesslow, G. (2010). Effect of conditioned stimulus parameters on timing of conditioned purkinje cell responses. Journal of Neurophysiology, 103(3), 1329–1336. https://doi.org/10.1152/jn.00524.2009

    Article  PubMed  Google Scholar 

  • Welsh, J. P., Yamaguchi, H., Zeng, X. H., Kojo, M., Nakada, Y., Takagi, A., Sugimori, M., & Llinas, R. R. (2005). Normal motor learning during pharmacological prevention of Purkinje cell long-term depression. Proceedings of the National Academy of Sciences of the United States of America, 102(47), 17166–17171. https://doi.org/10.1073/pnas.0508191102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wetmore, D. Z., Jirenhed, D.-A., Rasmussen, A., Johansson, F., Schnitzer, M. J., & Hesslow, G. (2014). Bidirectional plasticity of purkinje cells matches temporal features of learning. Journal of Neuroscience, 34(5), 1731–1737. https://doi.org/10.1523/JNEUROSCI.2883-13.2014

    Article  CAS  PubMed  Google Scholar 

  • Wischmeyer, E., Doring, F., Wischmeyer, E., Spauschus, A., Thomzig, A., Veh, R., & Karschin, A. (1997). Subunit interactions in the assembly of neuronal Kir3.0 inwardly rectifying K+ channels. Molecular and Cellular Neurosciences, 9(3), 194–206. https://doi.org/10.1006/mcne.1997.0614

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki, T., & Tanaka, S. (2009). Computational models of timing mechanisms in the cerebellar granular layer. Cerebellum, 8, 423–432.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Swedish Research Council to F.J. (2016-00127 and 2019-02034) and to G.H. (2018-03191). Additional funding from the Krapperup Foundation to G.H. Additional funding to F.J. from the Swedish Brain Foundation (FO2020-0005), the Royal Swedish Academy of Sciences (ME2019-0048) and the Crafoord Foundation (20200529) as well as the Ã…ke Wiberg, Magnus Bergvall and Segerfalk foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germund Hesslow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hesslow, G., Jirenhed, DA., Johansson, F. (2021). Timing in Purkinje Cells and a Novel Learning Mechanism. In: Mizusawa, H., Kakei, S. (eds) Cerebellum as a CNS Hub. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-75817-2_15

Download citation

Publish with us

Policies and ethics