Skip to main content

States Are A-Changing, Complex Spikes Proclaim

  • Conference paper
  • First Online:

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

The cerebellum has been viewed historically as involved exclusively in motor control. However, understanding specific cerebellar processes has remained unsettled for a long time. Among the numerous hypotheses formulated to define cerebellar function one of the more successful has proved to be the forward internal model theory, which states that the cerebellum computes predictions of motor command consequences and compares them with sensory feedback to provide prediction errors (PEs).

One of the remaining challenges facing this theoretical framework relates to understanding the role of the complex spike (CS) discharge in cerebellar function. The canonical view is that CSs encode the errors required for online motor control and to update the forward internal model. However, a growing body of evidence challenges this assumption and emphasizes the need for more comprehensive models of CS function.

Also, there is increasing evidence that the cerebellum is involved in non-motor domains in a manner similar to motor control, raising the question whether the forward internal model framework can be generalized across all functional domains and be updated to offer a reasesment of CS function.

In this review, we propose a generalized forward model in which the cerebellum performs the same computations across all functional domains and across the hierarchy of the CNS. In this generalized model, the CS discharge acts as a state change detector that selects the appropriate forward models expressed in the simple spike (SS) activity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albus, J. S. (1971). A theory of cerebellar function. Mathematical Biosciences, 10, 25–61.

    Article  Google Scholar 

  • Bastian, A. J. (2006). Learning to predict the future: The cerebellum adapts feedforward movement control. Current Opinion in Neurobiology, 16, 645–649.

    Article  CAS  PubMed  Google Scholar 

  • Bastian, A. J., Martin, T. A., Keating, J. G., & Thach, W. T. (1996). Cerebellar ataxia: Abnormal control of interaction torques across multiple joints. Journal of Neurophysiology, 76, 492–509.

    Article  CAS  PubMed  Google Scholar 

  • Baumann, O., Borra, R. J., Bower, J. M., Cullen, K. E., Habas, C., Ivry, R. B., Leggio, M., Mattingley, J. B., Molinari, M., Moulton, E. A., Paulin, M. G., Pavlova, M. A., Schmahmann, J. D., & Sokolov, A. A. (2015). Consensus paper: The role of the cerebellum in perceptual processes. Cerebellum, 14, 197–220.

    Article  PubMed  Google Scholar 

  • Boyden, E. S., Katoh, A., & Raymond, J. L. (2004). Cerebellum-dependent learning: The role of multiple plasticity mechanisms. Annual Review of Neuroscience, 27, 581–609.

    Article  CAS  PubMed  Google Scholar 

  • Brooks, J. X., & Cullen, K. E. (2013). The primate cerebellum selectively encodes unexpected self-motion. Current Biology, 23, 947–955.

    Article  CAS  PubMed  Google Scholar 

  • Brooks, J. X., Carriot, J., & Cullen, K. E. (2015). Learning to expect the unexpected: Rapid updating in primate cerebellum during voluntary self-motion. Nature Neuroscience, 18, 1310–1317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camus, S., Ko, W. K., Pioli, E., & Bezard, E. (2015). Why bother using non-human primate models of cognitive disorders in translational research? Neurobiology of Learning and Memory, 124, 123–129.

    Article  PubMed  Google Scholar 

  • Carta, I., Chen, C. H., Schott, A. L., Dorizan, S., & Khodakhah, K. (2019). Cerebellar modulation of the reward circuitry and social behavior. Science, 363, eaav0581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catz, N., Dicke, P. W., & Thier, P. (2005). Cerebellar complex spike firing is suitable to induce as well as to stabilize motor learning. Current Biology, 15, 2179–2189.

    Article  CAS  PubMed  Google Scholar 

  • Coesmans, M., Weber, J. T., De Zeeuw, C. I., & Hansel, C. (2004). Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron, 44, 691–700.

    Article  CAS  PubMed  Google Scholar 

  • Colin, F., Manil, J., & Desclin, J. C. (1980). The olivocerebellar system. I. Delayed and slow inhibitory effects: An overlooked salient feature of cerebellar climbing fibers. Brain Research, 187, 3–27.

    Article  CAS  PubMed  Google Scholar 

  • D’Mello, A. M., Turkeltaub, P. E., & Stoodley, C. J. (2017). Cerebellar tDCS modulates neural circuits during semantic prediction: A combined tDCS-fMRI study. The Journal of Neuroscience, 37, 1604–1613.

    Article  PubMed  PubMed Central  Google Scholar 

  • De Zeeuw, C. I., Simpson, J. I., Hoogenraad, C. C., Galjart, N., Koekkoek, S. K., & Ruigrok, T. J. (1998). Microcircuitry and function of the inferior olive. Trends in Neurosciences, 21, 391–400.

    Article  PubMed  Google Scholar 

  • Diedrichsen, J., Hashambhoy, Y., Rane, T., & Shadmehr, R. (2005). Neural correlates of reach errors. The Journal of Neuroscience, 25, 9919–9931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebner, T. J., Hewitt, A. L., & Popa, L. S. (2011). What features of limb movements are encoded in the discharge of cerebellar neurons? Cerebellum, 10, 683–693.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrucci, R., Marceglia, S., Vergari, M., Cogiamanian, F., Mrakic-Sposta, S., Mameli, F., Zago, S., Barbieri, S., & Priori, A. (2008). Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. Journal of Cognitive Neuroscience, 20, 1687–1697.

    Article  CAS  PubMed  Google Scholar 

  • Flament, D., Ellermann, J. M., Kim, S.-G., Ugurbil, K., & Ebner, T. J. (1996). Functional magnetic resonance imaging of cerebellar activation during the learning of a visuomotor dissociation task. Human Brain Mapping, 4, 210–226.

    Article  CAS  PubMed  Google Scholar 

  • Frens, M. A., Mathoera, A. L., & van der Steen, J. (2001). Floccular complex spike response to transparent retinal slip. Neuron, 30, 795–801.

    Article  CAS  PubMed  Google Scholar 

  • Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews. Neuroscience, 11, 127–138.

    Article  CAS  PubMed  Google Scholar 

  • Gao, Z., van Beugen, B. J., & De Zeeuw, C. I. (2012). Distributed synergistic plasticity and cerebellar learning. Nature Reviews. Neuroscience, 13, 619–635.

    Article  CAS  PubMed  Google Scholar 

  • Gao, Z., Davis, C., Thomas, A. M., Economo, M. N., Abrego, A. M., Svoboda, K., De Zeeuw, C. I., & Li, N. (2018). A cortico-cerebellar loop for motor planning. Nature, 563, 113–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golla, H., Tziridis, K., Haarmeier, T., Catz, N., Barash, S., & Thier, P. (2008). Reduced saccadic resilience and impaired saccadic adaptation due to cerebellar disease. The European Journal of Neuroscience, 27, 132–144.

    Article  PubMed  Google Scholar 

  • Harris, K. D., & Thiele, A. (2011). Cortical state and attention. Nature Reviews. Neuroscience, 12, 509–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heffley, W., & Hull, C. (2019). Classical conditioning drives learned reward prediction signals in climbing fibers across the lateral cerebellum. eLife, 8, e46764.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heffley, W., Song, E. Y., Xu, Z., Taylor, B. N., Hughes, M. A., McKinney, A., Joshua, M., & Hull, C. (2018). Coordinated cerebellar climbing fiber activity signals learned sensorimotor predictions. Nature Neuroscience, 21, 1431–1441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hewitt, A., Popa, L. S., Pasalar, S., Hendrix, C. M., & Ebner, T. J. (2011). Representation of limb kinematics in Purkinje cell simple spike discharge is conserved across multiple tasks. Journal of Neurophysiology, 106, 2232–2247.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hewitt, A. L., Popa, L. S., & Ebner, T. J. (2015). Changes in Purkinje cell simple spike encoding of reach kinematics during adaptation to a mechanical perturbation. The Journal of Neuroscience, 35, 1106–1124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horn, K. M., Deep, A., & Gibson, A. R. (2013). Progressive limb ataxia following inferior olive lesions. The Journal of Physiology, 591, 5475–5489.

    Article  CAS  PubMed  Google Scholar 

  • Imamizu, H., & Kawato, M. (2009). Brain mechanisms for predictive control by switching internal models: Implications for higher-order cognitive functions. Psychological Research, 73, 527–544.

    Article  PubMed  Google Scholar 

  • Imamizu, H., Miyauchi, S., Tamada, T., Sasaki, Y., Takino, R., Putz, B., Yoshioka, T., & Kawato, M. (2000). Human cerebellar activity reflecting an acquired internal model of a new tool. Nature, 403, 192–195.

    Article  CAS  PubMed  Google Scholar 

  • Ito, M. (2002). Historical review of the significance of the cerebellum and the role of Purkinje cells in motor learning. Annals of the New York Academy of Sciences, 978, 273–288.

    Article  PubMed  Google Scholar 

  • Ito, M. (2008). Control of mental activities by internal models in the cerebellum. Nature Reviews. Neuroscience, 9, 304–313.

    Article  CAS  PubMed  Google Scholar 

  • Ito, M., & Kano, M. (1982). Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neuroscience Letters, 33, 253–258.

    Article  CAS  PubMed  Google Scholar 

  • Izawa, J., Criscimagna-Hemminger, S. E., & Shadmehr, R. (2012). Cerebellar contributions to reach adaptation and learning sensory consequences of action. The Journal of Neuroscience, 32, 4230–4239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawato, M. (1999). Internal models for motor control and trajectory planning. Current Opinion in Neurobiology, 9, 718–727.

    Article  CAS  PubMed  Google Scholar 

  • Ke, M. C., Guo, C. C., & Raymond, J. L. (2009). Elimination of climbing fiber instructive signals during motor learning. Nature Neuroscience, 12, 1171–1179.

    Article  CAS  PubMed  Google Scholar 

  • Kim, G., Laurens, J., Yakusheva, T. A., & Blazquez, P. M. (2019). The macaque cerebellar flocculus outputs a forward model of eye movement. Frontiers in Integrative Neuroscience, 13, 12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitamura, K., & Kano, M. (2013). Dendritic calcium signaling in cerebellar Purkinje cell. Neural Networks, 47, 11–17.

    Article  PubMed  Google Scholar 

  • Kostadinov, D., Beau, M., Blanco-Pozo, M., & Hausser, M. (2019). Predictive and reactive reward signals conveyed by climbing fiber inputs to cerebellar Purkinje cells. Nature Neuroscience, 22, 950–962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koziol, L. F., Budding, D. E., & Chidekel, D. (2012). From movement to thought: Executive function, embodied cognition, and the cerebellum. Cerebellum, 11, 505–525.

    Article  PubMed  Google Scholar 

  • Leow, L. A., Marinovic, W., de Rugy, A., & Carroll, T. J. (2020). Task errors drive memories that improve sensorimotor adaptation. The Journal of Neuroscience, 40, 3075–3088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesage, E., Morgan, B. E., Olson, A. C., Meyer, A. S., & Miall, R. C. (2012). Cerebellar rTMS disrupts predictive language processing. Current Biology, 22, R794–R795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesage, E., Hansen, P. C., & Miall, R. C. (2017). Right lateral cerebellum represents linguistic predictability. The Journal of Neuroscience, 37, 6231–6241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, Q., Manley, J., Helmreich, M., Schlumm, F., Li, J. M., Robson, D. N., Engert, F., Schier, A., Nobauer, T., & Vaziri, A. (2020). Cerebellar neurodynamics predict decision timing and outcome on the single-trial level. Cell, 180, 536–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llinas, R. R. (2013). The olivo-cerebellar system: A key to understanding the functional significance of intrinsic oscillatory brain properties. Frontiers in Neural Circuits, 7, 96.

    PubMed  Google Scholar 

  • Llinas, R., Walton, K., Hillman, D. E., & Sotelo, C. (1975). Inferior olive: Its role in motor learing. Science, 190, 1230–1231.

    Article  CAS  PubMed  Google Scholar 

  • Marr, D. (1969). A theory of cerebellar cortex. The Journal of Physiology, 202, 437–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maschke, M., Gomez, C. M., Ebner, T. J., & Konczak, J. (2004). Hereditary cerebellar ataxia progressively impairs force adaptation during goal-directed arm movements. Journal of Neurophysiology, 91, 230–238.

    Article  PubMed  Google Scholar 

  • Mazzoni, P., & Krakauer, J. W. (2006). An implicit plan overrides an explicit strategy during visuomotor adaptation. The Journal of Neuroscience, 26, 3642–3645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miall, R. C., & Wolpert, D. M. (1996). Forward models for physiological motor control. Neural Networks, 9, 1265–1279.

    Article  PubMed  Google Scholar 

  • Miall, R. C., Weir, D. J., Wolpert, D. M., & Stein, J. F. (1993). Is the cerebellum a Smith predictor? Journal of Motor Behavior, 25, 203–216.

    Article  CAS  PubMed  Google Scholar 

  • Miall, R. C., Reckess, G. Z., & Imamizu, H. (2001). The cerebellum coordinates eye and hand tracking movements. Nature Neuroscience, 4, 638–644.

    Article  CAS  PubMed  Google Scholar 

  • Miall, R. C., Christensen, L. O., Cain, O., & Stanley, J. (2007). Disruption of state estimation in the human lateral cerebellum. PLoS Biology, 5, e316.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moberget, T., Gullesen, E. H., Andersson, S., Ivry, R. B., & Endestad, T. (2014). Generalized role for the cerebellum in encoding internal models: Evidence from semantic processing. The Journal of Neuroscience, 34, 2871–2878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molinari, M., Chiricozzi, F. R., Clausi, S., Tedesco, A. M., De, L. M., & Leggio, M. G. (2008). Cerebellum and detection of sequences, from perception to cognition. Cerebellum, 7, 611–615.

    Article  PubMed  Google Scholar 

  • Montarolo, P. G., Palestini, M., & Strata, P. (1982). The inhibitory effect of the olivocerebellar input on the cerebellar Purkinje cells in the rat. The Journal of Physiology, 332, 187–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morton, S. M., & Bastian, A. J. (2006). Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. The Journal of Neuroscience, 26, 9107–9116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen-Vu, T. D., Kimpo, R. R., Rinaldi, J. M., Kohli, A., Zeng, H., Deisseroth, K., & Raymond, J. L. (2013). Cerebellar Purkinje cell activity drives motor learning. Nature Neuroscience, 16, 1734–1736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nixon, P. D., & Passingham, R. E. (2000). The cerebellum and cognition: Cerebellar lesions impair sequence learning but not conditional visuomotor learning in monkeys. Neuropsychologia, 38, 1054–1072.

    Article  CAS  PubMed  Google Scholar 

  • Noto, C. T., & Robinson, F. R. (2001). Visual error is the stimulus for saccade gain adaptation. Brain Research. Cognitive Brain Research, 12, 301–305.

    Article  CAS  PubMed  Google Scholar 

  • Oh, Y., & Schweighofer, N. (2019). Minimizing precision-weighted sensory prediction errors via memory formation and switching in motor adaptation. The Journal of Neuroscience, 39, 9237–9250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohmae, S., & Medina, J. F. (2015). Climbing fibers encode a temporal-difference prediction error during cerebellar learning in mice. Nature Neuroscience, 18, 1798–1803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oscarsson, O. (1980). Functional organization of olivary projection to the cerebellar anterior lobe. In J. Courville (Ed.), The inferior olivary nucleus: Anatomy and physiology (pp. 279–290). Raven.

    Google Scholar 

  • Pasalar, S., Roitman, A. V., Durfee, W. K., & Ebner, T. J. (2006). Force field effects on cerebellar Purkinje cell discharge with implications for internal models. Nature Neuroscience, 9, 1404–1411.

    Article  CAS  PubMed  Google Scholar 

  • Picard, F., & Friston, K. (2014). Predictions, perception, and a sense of self. Neurology, 83, 1112–1118.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pickering, M. J., & Clark, A. (2014). Getting ahead: Forward models and their place in cognitive architecture. Trends in Cognitive Sciences, 18, 451–456.

    Article  PubMed  Google Scholar 

  • Popa, L. S., Hewitt, A. L., & Ebner, T. J. (2012). Predictive and feedback performance errors are signaled in the simple spike discharge of individual Purkinje cells. The Journal of Neuroscience, 32, 15345–15358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popa, L. S., Hewitt, A. L., & Ebner, T. J. (2013). Purkinje cell simple spike discharge encodes error signals consistent with a forward internal model. Cerebellum, 12, 331–333.

    Article  PubMed  PubMed Central  Google Scholar 

  • Popa, L. S., Hewitt, A. L., & Ebner, T. J. (2014). The cerebellum for jocks and nerds alike. Frontiers in Systems Neuroscience, 8, 1–13.

    Article  Google Scholar 

  • Popa, L. S., Streng, M. L., & Ebner, T. J. (2016a). Signaling of predictive and feedback information in Purkinje cell simple spike activity. In D. H. Heck (Ed.), Neuronal codes of the cerebellum (pp. 1–25). Elsevier.

    Google Scholar 

  • Popa, L. S., Streng, M. L., Hewitt, A. L., & Ebner, T. J. (2016b). The errors of our ways: Understanding error representations in cerebellar-dependent motor learning. Cerebellum, 15, 93–103.

    Article  PubMed  PubMed Central  Google Scholar 

  • Popa, L. S., Streng, M. L., & Ebner, T. J. (2017). Long-term predictive and feedback encoding of motor signals in the simple spike discharge of Purkinje cells. eNeuro, 4, 0036–17.2017.

    Article  Google Scholar 

  • Pope, P. A., & Miall, R. C. (2012). Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimulation, 5, 84–94.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramnani, N. (2006). The primate cortico-cerebellar system: Anatomy and function. Nature Reviews. Neuroscience, 7, 511–522.

    Article  CAS  PubMed  Google Scholar 

  • Rochefort, C., Arabo, A., Andre, M., Poucet, B., Save, E., & Rondi-Reig, L. (2011). Cerebellum shapes hippocampal spatial code. Science, 334, 385–389.

    Article  CAS  PubMed  Google Scholar 

  • Rochefort, C., Lefort, J. M., & Rondi-Reig, L. (2013). The cerebellum: A new key structure in the navigation system. Frontiers in Neural Circuits, 7, 35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Runnqvist, E., Bonnard, M., Gauvin, H. S., Attarian, S., Trebuchon, A., Hartsuiker, R. J., & Alario, F. X. (2016). Internal modeling of upcoming speech: A causal role of the right posterior cerebellum in non-motor aspects of language production. Cortex, 81, 203–214.

    Article  PubMed  Google Scholar 

  • Schlerf, J. E., Ivry, R. B., & Diedrichsen, J. (2012). Encoding of sensory prediction errors in the human cerebellum. The Journal of Neuroscience, 32, 4913–4922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmahmann, J. D. (2004). Disorders of the cerebellum: Ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. The Journal of Neuropsychiatry and Clinical Neurosciences, 16, 367–378.

    Article  PubMed  Google Scholar 

  • Schmahmann, J. D. (2010). The role of the cerebellum in cognition and emotion: Personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychology Review, 20, 236–260.

    Article  PubMed  Google Scholar 

  • Serrien, D. J., & Wiesendanger, M. (2000). Temporal control of a bimanual task in patients with cerebellar dysfunction. Neuropsychologia, 38, 558–565.

    Article  CAS  PubMed  Google Scholar 

  • Shadmehr, R., & Holcomb, H. H. (1997). Neural correlates of motor memory consolidation. Science, 277, 821–825.

    Article  CAS  PubMed  Google Scholar 

  • Shadmehr, R., Smith, M. A., & Krakauer, J. W. (2010). Error correction, sensory prediction, and adaptation in motor control. Annual Review of Neuroscience, 33, 89–108.

    Article  CAS  PubMed  Google Scholar 

  • Sheu, Y. S., Liang, Y., & Desmond, J. E. (2019). Disruption of cerebellar prediction in verbal working memory. Frontiers in Human Neuroscience, 13, 61.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shidara, M., Kawano, K., Gomi, H., & Kawato, M. (1993). Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum. Nature, 365, 50–52.

    Article  CAS  PubMed  Google Scholar 

  • Shin, S. L., Zhao, G. Q., & Raymond, J. L. (2014). Signals and learning rules guiding oculomotor plasticity. The Journal of Neuroscience, 34, 10635–10644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Streng, M. L., Popa, L. S., & Ebner, T. J. (2017a). Climbing fibers control Purkinje cell representations of behavior. The Journal of Neuroscience, 37, 1997–2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Streng, M. L., Popa, L. S., & Ebner, T. J. (2017b). Climbing fibers predict movement kinematics and performance errors. Journal of Neurophysiology, 118, 1888–1902.

    Article  PubMed  PubMed Central  Google Scholar 

  • Streng, M. L., Popa, L. S., & Ebner, T. J. (2018a). Complex spike wars: A new hope. Cerebellum, 17, 735–746.

    Article  PubMed  PubMed Central  Google Scholar 

  • Streng, M. L., Popa, L. S., & Ebner, T. J. (2018b). Modulation of sensory prediction error in Purkinje cells during visual feedback manipulations. Nature Communications, 9, 1099.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strick, P. L., Dum, R. P., & Fiez, J. A. (2009). Cerebellum and nonmotor function. Annual Review of Neuroscience, 32, 413–434.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, H., Ishikawa, T., & Kakei, S. (2019). Neural evidence of the cerebellum as a state predictor. Cerebellum, 18, 349–371.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka, H., Ishikawa, T., Lee, J., & Kakei, S. (2020). The cerebro-cerebellum as a locus of forward model: A review. Frontiers in Systems Neuroscience, 14, 19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor, J. A., Klemfuss, N. M., & Ivry, R. B. (2010). An explicit strategy prevails when the cerebellum fails to compute movement errors. Cerebellum, 9, 580–586.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ten Brinke, M. M., Boele, H. J., Spanke, J. K., Potters, J. W., Kornysheva, K., Wulff, P., IJpelaar, A. C., Koekkoek, S. K., & De Zeeuw, C. I. (2015). Evolving models of Pavlovian conditioning: Cerebellar cortical dynamics in awake behaving mice. Cell Reports, 13, 1977–1988.

    Article  PubMed  CAS  Google Scholar 

  • Thach, W. T. (2007). On the mechanism of cerebellar contributions to cognition. Cerebellum, 6, 163–167.

    Article  CAS  PubMed  Google Scholar 

  • Thach, W. T., Goodkin, H. P., & Keating, J. G. (1992). The cerebellum and the adaptive coordination of movement. Annual Review of Neuroscience, 15, 403–442.

    Article  CAS  PubMed  Google Scholar 

  • Tomatsu, S., Ishikawa, T., Tsunoda, Y., Lee, J., Hoffman, D. S., & Kakei, S. (2016). Information processing in the hemisphere of the cerebellar cortex for control of wrist movement. Journal of Neurophysiology, 115, 255–270.

    Article  PubMed  Google Scholar 

  • Tseng, Y. W., Diedrichsen, J., Krakauer, J. W., Shadmehr, R., & Bastian, A. J. (2007). Sensory prediction errors drive cerebellum-dependent adaptation of reaching. Journal of Neurophysiology, 98, 54–62.

    Article  PubMed  Google Scholar 

  • Wagner, M. J., & Luo, L. (2020). Neocortex-cerebellum circuits for cognitive processing. Trends in Neurosciences, 43, 42–54.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, M. J., Kim, T. H., Savall, J., Schnitzer, M. J., & Luo, L. (2017). Cerebellar granule cells encode the expectation of reward. Nature, 544, 96–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner, M. J., Kim, T. H., Kadmon, J., Nguyen, N. D., Ganguli, S., Schnitzer, M. J., & Luo, L. (2019). Shared cortex-cerebellum dynamics in the execution and learning of a motor task. Cell, 177, 669–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallman, J., & Fuchs, A. F. (1998). Saccadic gain modification: Visual error drives motor adaptation. Journal of Neurophysiology, 80, 2405–2416.

    Article  CAS  PubMed  Google Scholar 

  • Winkelman, B., & Frens, M. (2006). Motor coding in floccular climbing fibers. Journal of Neurophysiology, 95, 2342–2351.

    Article  PubMed  Google Scholar 

  • Winkelman, B. H., Belton, T., Suh, M., Coesmans, M., Morpurgo, M. M., & Simpson, J. I. (2014). Nonvisual complex spike signals in the rabbit cerebellar flocculus. The Journal of Neuroscience, 34, 3218–3230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). An internal model for sensorimotor integration. Science, 269, 1880–1882.

    Article  CAS  PubMed  Google Scholar 

  • Wolpert, D. M., Miall, R. C., & Kawato, M. (1998). Internal models in the cerebellum. Trends in Cognitive Sciences, 2, 338–347.

    Article  CAS  PubMed  Google Scholar 

  • Xu-Wilson, M., Chen-Harris, H., Zee, D. S., & Shadmehr, R. (2009). Cerebellar contributions to adaptive control of saccades in humans. The Journal of Neuroscience, 29, 12930–12939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Ebner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Popa, L.S., Aronson, J.D., Ebner, T.J. (2021). States Are A-Changing, Complex Spikes Proclaim. In: Mizusawa, H., Kakei, S. (eds) Cerebellum as a CNS Hub. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-75817-2_12

Download citation

Publish with us

Policies and ethics