Skip to main content

Fastigial Nucleus Input/Output Related to Motor Control

  • Conference paper
  • First Online:
Cerebellum as a CNS Hub

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

The cerebellar cortex is morphologically homogenous but can be separated into compartments based on distinct input/output patterns. Therefore, the function of each cerebellar compartment can be determined by the precise pattern of its unique afferent and efferent connections with extracerebellar CNS. Oscarsson proposed a microzonal structure of the cerebellar cortex as a structural–functional unit, and Ito extended this idea to a “corticonuclear microcomplex”: a structural–functional unit organization of the cerebellum. To clarify how the input/output structure gives rise to its separation into microcomplexes, we will first present the axonal trajectories of single mossy and climbing fiber neurons and the relationship of the A–D longitudinal zones with aldolase C longitudinal compartments in the cerebellar cortex and nuclei. Secondly, we will summarize neural circuits of inputs and outputs of the fastigial nucleus in relation to motor control and will discuss outstanding problems in our understanding of the cerebellar circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn, A. H., Dziennis, S., Hawkes, R., & Herrup, K. (1994). The cloning of zebrin II reveals its identity with aldolase C. Development, 120, 2081–2090.

    Google Scholar 

  • Akaike, T. (1983). Neuronal organization of vestibulo-spinal system in the cat. Brain Research, 259, 217–227.

    Article  CAS  PubMed  Google Scholar 

  • Ando, T., Ueda, M., Luo, Y., & Sugihara, I. (2020). Heterogeneous vestibulocerebellar mossy fiber projections revealed by single axon reconstruction in the mouse. The Journal of Comparative Neurology, 5, 1775–1802.

    Article  CAS  Google Scholar 

  • Angaut, P., & Bowsher, D. (1970). Ascending projections of the medial cerebellar (fastigial) nucleus: An experimental study in the cat. Brain Research, 24, 49–68.

    Article  CAS  PubMed  Google Scholar 

  • Asanome, M., Matsuyama, K., & Mori, S. (1998). Augmentation of postural muscle tone induced by the stimulation of the descending fibers in the midline area of the cerebellar white matter in the acute decerebrate cat. Neuroscience Research, 30, 257–269.

    Article  CAS  PubMed  Google Scholar 

  • Asanuma, C., Thach, T., & Jones, E. G. (1983). Brainstem and spinal projections of the deep cerebellar nuclei in the monkey, with observations on the brainstem projections of the dorsal column nuclei. Brain Research Reviews, 5, 299–322.

    Article  Google Scholar 

  • Bagnall, M. W., Zingg, B., Sakatos, A., Moghadam, S. H., Zeilhofer, H. U., & du Lac, S. (2009). Glycinergic projection neurons of the cerebellum. The Journal of Neuroscience, 29, 10104–10110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batton, R. R., III, Jayaraman, A., Rugiero, D., & Carpenter, M. B. (1977). Fastigial efferent projections in the monkey: An autoradiographic study. The Journal of Comparative Neurology, 174, 281–306.

    Article  PubMed  Google Scholar 

  • Biswas, M. S., Luo, Y., Sarpong, G. A., & Sugihara, I. (2019). Divergent projections of single pontocerebellar axons to multiple cerebellar lobules in the mouse. The Journal of Comparative Neurology, 527, 1966–1985.

    Article  CAS  PubMed  Google Scholar 

  • Brochu, G., Maler, L., & Hawkes, R. (1990). Zebrin II: A polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. The Journal of Comparative Neurology, 291, 538–552.

    Article  CAS  PubMed  Google Scholar 

  • Brodal, A. (1969). Neurological anatomy in relation to clinical medicine (2nd ed.). Oxford University Press.

    Google Scholar 

  • Brodal, A. (1981). Neurological Anatomy in Relation to Clinical Medicine (3rd ed.). Oxford University Press.

    Google Scholar 

  • Brodal, A. (1984). The vestibular nuclei in the macaque monkey. The Journal of Comparative Neurology, 227, 252–266.

    Article  CAS  PubMed  Google Scholar 

  • Brodal, A., & Hϕivik, B. (1964). Site and mode of termination of primary vestibulo-cerebellar fibers in the cat. An experimental study with silver impregnation methods. Archives Italiennes de Biologie, 102, 1–21.

    CAS  PubMed  Google Scholar 

  • Brodal, A., Pompeiano, O., & Walberg, F. (1962). The vestibular nuclei and their connections. Anatomy and Functional Correlations. The Henderson Trust Lectures.

    Google Scholar 

  • Brodal, A., & Pompeinano, O. (1957). The vestibular nuclei in the cat. Journal of Anatomy (London), 91, 438–454.

    CAS  Google Scholar 

  • Brodal, A., & Torvik, A. (1957). Uber den Ursprung der sekundaren vestibulocerebellaren Fasern bei der Katze. Eine experimenteill-anatomische Studie. Archiv für Psychiatrie Z und Nervenkrankheiten Gesamte Neurologica, 195, 550–567.

    Article  CAS  Google Scholar 

  • Brookhart, J. M. (1959). The cerebellum. In Textbook of physiology, Sect. I. Neurophysiology II (pp. 1245–1280).

    Google Scholar 

  • Brooks, J. X., & Cullen, K. E. (2009). Multimodal integration in rostral fastigial nucleus provides an estimate of body movement. The Journal of Neuroscience, 29(34), 10499–10511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buisseret-Delmas, C., & Angaut, P. (1993). The cerebellar olivo-corticonuclear connections in the rat. Progress in Neurobiology, 40, 63–87.

    Article  CAS  PubMed  Google Scholar 

  • Büttner, U., Fuchs, A. F., Markert-Schwab, G., & Buckmaster, P. (1991). Fastigial nucleus activity in the alert monkey during slow eye and head movements. Journal of Neurophysiology, 65, 1360–1371.

    Article  PubMed  Google Scholar 

  • Cajal, S. R. (1911). Histologie du Système Nerveux de l’Homme et des Vertébrés (Vol. 2). Maloine.

    Google Scholar 

  • Carpenter, M. B. (1960). Experimental anatomical-physiological studies of the vestibular nerve and cerebellar connections. In G. L. Rasmussen & W. Windfle (Eds.), Neural Mechanisms of the Auditory and Vestibular Systems (pp. 279–323). CC Thomas.

    Google Scholar 

  • Carpenter, M. B., Bard, D. S., & Aling, F. A. (1959). Anatomical connections between the fastigial nuclei the labyrinth and the vestibular nuclei in the cat. The Journal of Comparative Neurology, 111, 1–26.

    Article  Google Scholar 

  • Carpenter, M. B., Brittin, G. M., & Pines, J. (1958). Isolated lesions of the fastigial nuclei in the cat. The Journal of Comparative Neurology, 109, 65–89.

    Article  CAS  PubMed  Google Scholar 

  • Carpenter, M. B., & Nova, H. R. (1960). Descending division of the brachium conjunctivum in the cat: A cerebelloreticular system. The Journal of Comparative Neurology, 114, 295–305.

    Article  CAS  PubMed  Google Scholar 

  • Chambers, W. W., & Sprague, J. M. (1955). Functional localization in the cerebellum. I. Organization in longitudinal cortico-nuclear zones and their contribution to the control of posture, both extrapyramidal and pyramidal. The Journal of Comparative Neurology, 103, 105–130.

    Article  CAS  PubMed  Google Scholar 

  • Chan-Palay, V. (1977). Cerebellar dentate nucleus. Organization, cytology, and transmitters. Springer.

    Book  Google Scholar 

  • Cohen, D., Chambers, W. W., & Sprague, J. M. (1958). Experimental study of the efferent projections from the cerebellar nuclei to the brainstem of the cat. The Journal of Comparative Neurology, 109, 233–259.

    Article  CAS  PubMed  Google Scholar 

  • Dow, R. S., & Moruzzi, G. (1958). The physiology and pathology of the cerebellum. The University of Minnesota Press.

    Google Scholar 

  • Eccles, J. C., Ito, M., & Szentágothai, J. (1967). The cerebellum as a neuronal machine. Springer.

    Book  Google Scholar 

  • Eccles, J. C., Nicoll, R. A., Schwarz, W. F., Táboriková, H., & Willey, T. J. (1975). Reticulospinal neurons with and without monosynaptic inputs from cerebellar nuclei. Journal of Neurophysiology, 38, 513–530.

    Article  CAS  PubMed  Google Scholar 

  • Edwards, S. B., Ginsburgh, C. L., Henkel, C. K., & Stein, B. E. (1979). Sources of subcortical projections to the superior colliculus in the cat. The Journal of Comparative Neurology, 184, 309–330.

    Article  CAS  PubMed  Google Scholar 

  • Epema, A. H., Gerrits, N. M., & Voogd, J. (1988). Commissural and intrinsic connections of the vestibular nuclei in the rabbit: A retrograde labeling study. Experimental Brain Research, 71, 129–146.

    Article  CAS  PubMed  Google Scholar 

  • Flood, S., & Jansen, J. (1966). The efferent fibers of the cerebellar nuclei and their distribution on the cerebellar peduncles in the cat. Acta Anatomica (Basel), 63, 137–166.

    Article  CAS  Google Scholar 

  • Fuchs, A. F., Robinson, F. R., & Straube, A. (1993). Role of the caudal fastigial nucleus in saccade generation. I. Neuronal discharge pattern. Journal of Neurophysiology, 70, 1723–1740.

    Google Scholar 

  • Fujita, H., Kodama, T., du Lac, S. (2020). Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis. eLife, 9, e58613. 

    Google Scholar 

  • Fukushima, K., Peterson, B. W., Uchino, Y., Coulter, J. D., & Wilson, V. J. (1977). Direct fastigiospinal fibers in the cat. Brain Research, 126, 538–542.

    Article  CAS  PubMed  Google Scholar 

  • Furuya, N., Kawano, K., & Shimazu, H. (1975). Functional organization of vestibulofastigial projection in the horizontal semicircular canal system in the cat. Experimental Brain Research, 24, 75–87.

    Article  CAS  PubMed  Google Scholar 

  • Furuya, N., Kawano, K., & Shimazu, H. (1976). Transcerebellar inhibitory interaction between bilateral vestibular nuclei and its modulation by cerebellocortical activity. Experimental Brain Research, 25, 447–463.

    Article  CAS  PubMed  Google Scholar 

  • Gardner, E. P., & Fuchs, A. F. (1975). Single-unit responses to natural vestibular stimuli and eye movements in deep cerebellar nuclei of the alert rhesus monkey. Journal of Neurophysiology, 38, 627–649.

    Article  CAS  PubMed  Google Scholar 

  • Gerrits, N. M., & Voogd, J. (1987). The projection of the nucleus reticularis tegmenti pontis and adjacent regions of the pontine nuclei to the central cerebellar nuclei in the cat. The Journal of Comparative Neurology, 258, 52–62.

    Article  CAS  PubMed  Google Scholar 

  • Gerrits, N. M., Voogd, J., & Magras, I. N. (1985). Vestibular afferents of the inferior olive and the vestibulo-olivo-cerebellar climbing fiber pathway to the flocculus in the cat. Brain Research, 332, 325–336.

    Article  CAS  PubMed  Google Scholar 

  • Ghelarducci, B. (1973). Responses of cerebellar fastigial neurones to tilt. Pflügers Archiv, 344, 195–206.

    Article  CAS  PubMed  Google Scholar 

  • Goffart, L., & Pélisson, D. (1998). Orienting gaze shifts during muscimol inactivation of caudal fastigial nucleus in the cat. I. Gaze dysmetria. Journal of Neurophysiology, 79, 1942–1958.

    Google Scholar 

  • Gonzalo-Ruiz, A., & Leichnetz, G. R. (1990). Afferents of the caudal fastigial nucleus in a New World monkey (Cebus apella). Experimental Brain Research, 80, 600–608.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalo-Ruiz, A., Leichnetz, G. R., & Smith, D. J. (1988). Origin of cerebellar projections to the region of the oculomotor complex, medial pontine reticular formation, and superior colliculus in new world monkeys: A retrograde horseradish peroxidase study. The Journal of Comparative Neurology, 268, 508–526.

    Article  CAS  PubMed  Google Scholar 

  • Grantyn, A., & Grantyn, R. (1982). Axonal patterns and sites of termination of cat superior colliculus neurons projecting in the tecto-bulbo-spinal tract. Experimental Brain Research, 46, 243–256.

    Article  CAS  PubMed  Google Scholar 

  • Groenewegen, H. J., & Voogd, J. (1977). The parasagittal zonation within the olivocerebellar projection. I. Climbing fiber distribution in the vermis of cat cerebellum. The Journal of Comparative Neurology, 174, 417–488.

    Google Scholar 

  • Gruart, A., & Delgado-Garcia, J. M. (1994). Signalling properties of identified deep cerebellar nuclear neurons related to eye and head movements in the alert cat. The Journal of Physiology, 471, 37–54.

    Article  Google Scholar 

  • Hawkes, R., & Leclerc, N. (1987). Antigenic map of the rat cerebellar cortex: The distribution of parasagittal bands as revealed by monoclonal anti-Purkinje cell antibody mabQ113. The Journal of Comparative Neurology, 256, 29–41.

    Google Scholar 

  • Helmchen, C., Straube, A., & Buttner, U. (1994). Saccade-related activity in the fastigial oculomotor region of the macaque monkey during spontaneous eye movements in light and darkness. Experimental Brain Research, 98, 474–482.

    Article  CAS  PubMed  Google Scholar 

  • Hikosaka, O., & Kawakami, T. (1977). Inhibitory reticular neurons related to the quick phase of vestibular nystagmus-their location and projection. Experimental Brain Research, 27, 377–396.

    CAS  PubMed  Google Scholar 

  • Hirai, T., & Jones, E. G. (1989). A new parcellation of the human thalamus on the basis of histochemical staining. Brain Research, 14, 1–34.

    Article  CAS  PubMed  Google Scholar 

  • Hirai, T., Onodera, S., & Kawamura, K. (1982). Cerebellotectal projections studied in cats with horseradish peroxidase or tritiated amino acids axonal transport. Experimental Brain Research, 48, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Homma, Y., Nonaka, S., Matsuyama, K., & Mori, S. (1995). Fastigiofugal projection to the brainstem nuclei in the cat: An antegrade PHA-L tracing study. Neuroscience Research, 23, 89–102.

    Article  CAS  PubMed  Google Scholar 

  • Ito, M. (1970). Neurophysiological aspects of the cerebellar motor control system. International Journal of Neurology, 7, 162–176.

    CAS  PubMed  Google Scholar 

  • Ito, M. (1984). The cerebellum and neural control. Raven.

    Google Scholar 

  • Ito, M. (2012). The cerebellum - brain for an implicit self. PFT Press.

    Google Scholar 

  • Ito, M., Kawai, N., & Udo, M. (1968). The origin of cerebellar-induced inhibition of Deiters neurones. III. Localization of the inhibitory zone. Experimental Brain Research, 4, 310–320.

    Article  CAS  PubMed  Google Scholar 

  • Ito, M., Kawai, N., Udo, M., & Sato, N. (1969). Axon reflex activation of Deiters’ neurones from the cerebellar cortex through collaterals of the cerebellar afferents. Experimental Brain Research, 8, 249–268.

    Article  CAS  PubMed  Google Scholar 

  • Ito, M., Udo, M., Mano, N., & Kawai, N. (1970). Synaptic action of the fastigiobulbar impulses upon neurones in the medullary reticular formation and vestibular nuclei. Experimental Brain Research, 11, 29–47.

    Article  CAS  PubMed  Google Scholar 

  • Ito, M., & Yoshida, M. (1966). The origin of cerebellar-induced inhibition of Deiters’ neurones. I. Monosynaptic initiation of the inhibitory postsynaptic potential. Experimental Brain Research, 2, 330–349.

    Article  CAS  PubMed  Google Scholar 

  • Jansen, J., & Brodal, A. (1940). Experimental studies on the intrinsic fibers of the cerebellum. II. The corticonuclear projection. The Journal of Comparative Neurology, 73, 267–321.

    Article  Google Scholar 

  • Jansen, J., & Brodal, A. (1942). Experimental studies on the intrinsic fibers of the cerebellum. III. Cortico-nuclear projection in the rabbit and the monkey. Norsk Vid Akad Avh 1 Math Nat Kl, 3, 1–50.

    Google Scholar 

  • Jansen, J., & Jansen, J. (1955). On the efferent fibers of the cerebellar nuclei in the cat. The Journal of Comparative Neurology, 102, 607–632.

    Article  CAS  PubMed  Google Scholar 

  • Jasper, H. H. (1949). Diffuse projection system: The integrative action of the thalamic recruiting system. Electroencephalography and Clinical Neurophysiology, 1, 405–420.

    Article  CAS  PubMed  Google Scholar 

  • Jones, E. G. (1985). The thalamus. Plenum Press.

    Book  Google Scholar 

  • Kase, M., Miller, D. C., & Noda, H. (1980). Discharges of Purkinje cells and mossy fibres in the cerebellar vermis of the monkey during saccadic eye movements and fixation. The Journal of Physiology, 300, 539–555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawamura, K., & Hashikawa, T. (1979). Olivocerebellar projections in the cat studied by means of anterograde axonal transport of labeled amino acids as tracers. Neuroscience, 4, 1615–1633.

    Google Scholar 

  • Kawamura, K., Hattori, S., Higo, S., & Matsuyama, T. (1982). The cerebellar projections to the superior colliculus and pretectum in the cat: An autoradiographic and horseradish peroxidase study. Neuroscience, 7, 1673–1689.

    Google Scholar 

  • Keller, E. L., Slakey, D. P., & Crandall, W. F. (1983). Microstimulation of the primate cerebellar vermis during saccadic eye movements. Brain Research, 288, 131–143.

    Article  CAS  PubMed  Google Scholar 

  • Kelly, R. B., & Strick, P. (2013). Cerebellar loops with motor cortex and prefrontal cortex in a non-human primate. The Journal of Neuroscience, 23, 8432–8444.

    Google Scholar 

  • Kievit, J., & Kuypers, H. G. J. M. (1972). Fastigial cerebellar projections to the ventrolateral nucleus of the thalamus and the organization of the descending pathways. In T. L. Frigyesi, E. Rinvik, & Yahr (Eds.), Corticothalamic projections and sensorimotor activities (pp. 91–111). Raven Press.

    Google Scholar 

  • Kitai, S. T., Kocsis, J. D., Preston, R. J., & Sugimori, M. (1976). Monosyaptic inputs to caudate neurons identified by intracellular injection of horseradish peroxidase. Brain Research, 109, 601–606.

    Article  CAS  PubMed  Google Scholar 

  • Kojima, Y., Iwamoto, Y., Robinson, F. R., Noto, C. T., & Yoshida, K. (2008). Premotor inhibitory neurons carry signals related to saccade adaptation in the monkey. Journal of Neurophysiology, 99, 220–230.

    Article  PubMed  Google Scholar 

  • Kotchbkdi, N., & Walberg, F. (1978). Cerebellar afferent projections from the vestibular nuclei in the cat: An experimental study with the method of retrograde axonal transport of horseradish peroxidase. Experimental Brain Research, 31, 591–604.

    Google Scholar 

  • Krieger, C., Shinoda, Y., & Smith, A. M. (1985). Labeling of cerebellar mossy fiber afferents with intra-axonal horseradish peroxidase. Experimental Brain Research, 59, 414–417.

    Article  CAS  PubMed  Google Scholar 

  • Kurimoto, Y., Kawaguchi, S., & Murata, M. (1995). Cerebellotectal projection in the rat: Anterograde and retrograde WGA-HRP study of individual cerebellar nuclei. Neuroscience Research, 22, 57–71.

    Article  CAS  PubMed  Google Scholar 

  • Llinás, R., & Wolfe, J. W. (1977). Functional linkage between the electrical activity in the vermal cerebellar cortex and saccadic eye movements. Experimental Brain Research, 29, 1–24.

    Article  PubMed  Google Scholar 

  • Luo, Y., Patel, R. P., Sarpong, G. A., Sasamura, K., & Sugihara. (2017). Single axonal morphology and termination to cerebellar aldolase C stripes characterize distinct spinocerebellar projection systems originating from the thoracic spinal cord in the mouse. The Journal of Comparative Neurology, 526, 681–706.

    Article  PubMed  CAS  Google Scholar 

  • Macchi, G., & Jones, E. G. (1997). Towards an agreement on terminology of nuclear and subthalamic divisions of the motor thalamus. Journal of Neurosurgery, 86, 670–685.

    Article  CAS  PubMed  Google Scholar 

  • Matsushita, M., Gao, X., & Yanagisawa, H. (1995). Spinovestibular projections in the rat, with particular reference to projections from the central cervical nucleus to the lateral vestibular nucleus. The Journal of Comparative Neurology, 361, 334–344.

    Article  CAS  PubMed  Google Scholar 

  • Matsushita, M., & Hosoya, Y. (1978). The location of spinal projection neurons in the cerebellar nuclei (cerebellospinal tract neurons) of the cat. A study with the horseradish peroxidase technique. Brain Research, 142, 237–248.

    Article  CAS  PubMed  Google Scholar 

  • Matsushita, M., & Xiong, G. (2001). Uncrossed and crossed projections from the upper cervical nuclei in the rat, studied by anterograde axonal tracing. The Journal of Comparative Neurology, 432, 101–118.

    Google Scholar 

  • Matsuyama, K., & Jankowska, E. (2004). Coupling between feline cerebellum (fastigial neurons) and motoneurons innervating hindlimb muscles. Journal of Neurophysiology, 91, 1183–1192.

    Article  PubMed  Google Scholar 

  • May, P. J. (2006). The mammalian superior: Laminar structure and connections. Progress in Brain Research, 151, 321–378.

    Article  PubMed  Google Scholar 

  • May, P. J., & Hall, W. C. (1986). The sources of the nigrotectal pathway. Neuroscience, 19, 159–180.

    Google Scholar 

  • May, P. J., Hartwich-Young, R., Nelson, J., Sparks, D. L., & Porter, J. D. (1990). Cerebellotectal pathways in the macaque: Implications for collicular generation of saccades. Neuroscience, 36, 305–324.

    Google Scholar 

  • Merger, T., Nardi, G. L., Becker, W., & Deecke, L. (1983). The role of canal-neck interaction for the perception of horizontal trunk and head rotation. Experimental Brain Research, 49, 198–208.

    Google Scholar 

  • Mihailoff, G. A. (1993). Cerebellar nuclear projections from the pontine nucleus and nucleus reticularis tegmenti pontis demonstrated with PHA-L tracing in the rat. The Journal of Comparative Neurology, 330, 130–146.

    Article  CAS  PubMed  Google Scholar 

  • Moolenaar, G. M., & Rucker, H. K. (1976). Autoradiographic study of brain stem projections from the fastigial pressor areas. Brain Research, 114, 492–496.

    Article  CAS  PubMed  Google Scholar 

  • Mori, S., Matsui, T., Kuze, B., Asanome, M., Nakajima, K., & Matsuyama, K. (1998). Cerebellar-induced locomotion: Reticulospinal control of spinal rhythm generating mechanism in cats. Annals of the New York Academy of Sciences, 860, 94–105.

    Article  CAS  PubMed  Google Scholar 

  • Moruzzi, G., & Pompeiano, O. (1956). Crossed fastigial influence on decerebrate rigidity. The Journal of Comparative Neurology, 106, 371–392.

    Article  CAS  PubMed  Google Scholar 

  • Moruzzi, G., & Pompeiano, O. (1957). Effects of vermal stimulation after fastigial lesion. Archives Italiennes de Biologie, 95, 31–55.

    Google Scholar 

  • Mugnaini, E., & Floris, A. (1994). The unipolar brush cell: A neglected neuron of the mammalian cerebellar cortex. The Journal of Comparative Neurology, 339, 174–180.

    Article  CAS  PubMed  Google Scholar 

  • Na, J., Sugihara, I., & Shinoda, Y. (2019). The entire trajectories of single pontocerebellar axons and their lobular and longitudinal terminal distribution patterns in multiple aldolase C positive compartments of the rat cerebellar cortex. The Journal of Comparative Neurology, 527, 2488–2511.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, M., & Matsuda, Y. (1983). Re-evaluation of cortical and thalamic responses evoked by stimulation of the cerebellar fastigial nucleus in the cat. Jap J Physiol, 33, 215–226.

    Article  CAS  Google Scholar 

  • Neuhuber, W. L., & Zenker, W. (1989). Central distribution of cervical primary afferents in the rat, with emphasis on proprioceptive projections to vestibular, perihypoglossal and upper thoracic spinal nuclei. The Journal of Comparative Neurology, 280, 231–253.

    Article  CAS  PubMed  Google Scholar 

  • Noda, T., & Oka, H. (1985). Fastigial inputs to the insular cortex in the cat: Field potential analysis. Neuroscience Letters, 53, 331–336.

    Article  CAS  PubMed  Google Scholar 

  • Noda, H., Sugita, S., & Ikeda, Y. (1990). Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey. The Journal of Comparative Neurology, 302, 330–348.

    Article  CAS  PubMed  Google Scholar 

  • Ogawa, T. (1935). Beiträge zur vergleichende Anatomie des Zentralnervensystems der Wassersäugetiere. Ueber die Kleinhirnkerne der Pinnipedien und Cetaceen. Arb Anat Inst Sendai, 17, 63–136.

    Google Scholar 

  • Ohtsuka, K., & Noda, H. (1991). Saccadic burst neurons in the oculomotor region of the fastigial nucleus of macaque monkeys. Journal of Neurophysiology, 65, 1422–1434.

    Article  CAS  PubMed  Google Scholar 

  • Oscarsson, O. (1969). Termination and functional organization of the dorsal spino-olivocerebellar path. Journal of Physiology (London), 200, 129–149.

    Article  CAS  Google Scholar 

  • Oscarsson, O. (1979). Functional units of the cerebellum-sagittal zones and microzones. Trends in Neurosciences, 2, 143–145.

    Article  Google Scholar 

  • Precht W, Llinás R (1968) Direct vestibular afferents to cat cerebellar nuclei. Proc XXIV IUPS Vol. VI, 1063.

    Google Scholar 

  • Quinet, J., & Goffart, L. (2007). Head-unrestrained gaze shifts after muscimol injection in the caudal fastigial nucleus of the monkey. Journal of Neurophysiology, 98, 3269–3283.

    Article  PubMed  Google Scholar 

  • Rasmussen, A. T. (1933). Origin and course of the fasciculus uncinatus (Rusell) in the cat, with observations on other fiber tracts arising from the cerebellar nuclei. The Journal of Comparative Neurology, 57, 165–197.

    Google Scholar 

  • Rispal-Padel, L., & Latreille, J. (1974). The organization of projections from the cerebellar nuclei to the contralateral motor cortex in the cat. Experimental Brain Research, 19, 36–60.

    Article  CAS  PubMed  Google Scholar 

  • Ritchie, L. (1976). Effects of cerebellar lesions on saccadic eye movements. Journal of Neurophysiology, 39, 1246–1256.

    Article  CAS  PubMed  Google Scholar 

  • Roldan, M., & Reinoso-Suarez, F. (1981). Cerebellar projections to the superior colliculus in the cat. The Journal of Neuroscience, 1, 827–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ron, S., & Robinson, D. A. (1973). Eye movements evoked by cerebellar stimulation in the alert monkey. Journal of Neurophysiology, 36, 1004–1022.

    Article  CAS  PubMed  Google Scholar 

  • Ruggiero, D., Batton, R. R., III, Jayaraman, A., & Carpenter, M. B. (1977). Brainstem afferents to the fastigial nucleus in the cat demonstrated by transport of horseradish peroxidase. The Journal of Comparative Neurology, 172, 189–210.

    Article  CAS  PubMed  Google Scholar 

  • Ruigrok, T. J. H., & Cella, F. (1995). Precerebellar nuclei and red nucleus. In G. Paxinos (Ed.), The rat nervous system, vol III, brain stem and cerebellum. Academic Sydney.

    Google Scholar 

  • Ruigrok, T. J. H., Cella, F., & Voogd, J. (1995). Connections of the lateral reticular nucleus to the lateral vestibular nucleus in the rat. An anterograde tracing study with phaseolus vulgaris leucoagglutinin. The European Journal of Neuroscience, 7, 1410–1413.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki, K. (1979). Cerebro-cerebellar interaction in cats and monkeys. In J. Massion & K. Sasaki (Eds.), Cerebro-cerebellar interactions (pp. 105–124). Elsevier.

    Google Scholar 

  • Sasaki, K., Kawaguchi, S., Matsuda, Y., & Mizuno, N. (1972). Electrophysiological studies on the cerebello-cerebral projections in the cat. Experimental Brain Research, 16, 75–88.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki, K., Staunton, H. P., & Dieckmann, G. (1970). Characteristic features of augmenting and recruiting responses in the cerebral cortex. Experimental Neurology, 26, 369–392.

    Article  CAS  PubMed  Google Scholar 

  • Schmahmann, J. D. (1991). An emerging concept. The cerebellar contribution to higher function. Archives of Neurology, 48, 1178–1187.

    Article  CAS  PubMed  Google Scholar 

  • Schmahmann, J. D. (1998). Dysmetria of thought: Clinical consequences of cerebellar dysfunction on cognition and affect. Trends Cogn Sci (Regul Ed), 2, 362–371.

    Article  CAS  Google Scholar 

  • Schmahmann, J. D., & Sherman, J. C. (1998). The cerebellar cognitive affective syndrome. Brain, 121(Pt4), 561–579.

    Article  PubMed  Google Scholar 

  • Scudder, C. A., & McGee, D. M. (2003). Adaptive modification of saccade size produces correlated changes in the discharges of fastigial nucleus neurons. Journal of Neurophysiology, 90, 1011–1026.

    Article  PubMed  Google Scholar 

  • Serapide, M. F., Panto, M. R., Parenti, R., Zappala, A., & Cicirata, F. (2001). Multiple zonal projections of the basilar pontine nuclei to the cerebellar cortex of the rat. The Journal of Comparative Neurology, 430, 471–484.

    Article  CAS  PubMed  Google Scholar 

  • Shimazu, H., & Precht, W. (1966). Inhibition of central vestibular neurons from the contralateral labyrinth and its mediating pathway. Journal of Neurophysiology, 29, 467–492.

    Article  CAS  PubMed  Google Scholar 

  • Shinoda, Y. (1999). Visualization of the entire trajectory of long axon axons of single mammalian CNS neurons. Brain Research Bulletin, 50, 387–388.

    Article  CAS  PubMed  Google Scholar 

  • Shinoda, Y., & Kakei, S. (1989). Distribution of terminals of thalamocortical fibers originating from the ventrolateral nucleus of the cat thalamus. Neuroscience Letters, 96, 163–167.

    Article  CAS  PubMed  Google Scholar 

  • Shinoda, Y., Kakei, S., Futami, T., & Wannier, T. (1993). Thalamocortical organization in the cerebello-thalamo-cortical system. Cerebral Cortex, 3, 421–429.

    Article  CAS  PubMed  Google Scholar 

  • Shinoda, Y., Ohgaki, T., & Futami, T. (1986). The morphology of single lateral vestibulospinal tract axons in the lower cervical spinal cord of the cat. The Journal of Comparative Neurology, 249, 226–241.

    Article  CAS  PubMed  Google Scholar 

  • Shinoda, Y., & Sugihara, I. (2013). Axonal trajectories of single climbing and mossy fiber neurons in the cerebellar cortex and nucleus. In M. Manto, D. L. Gruol, & S. J. Koibuchi (Eds.), Handbook of the cerebellum, and cerebellar disorders, Vol. 1 (pp. 437–467). Springer.

    Chapter  Google Scholar 

  • Shinoda, Y., Sugiuchi, Y., Futami, T., & Izawa, R. (1992). Axon collaterals of mossy fibers from the pontine nucleus in the cerebellar dentate nucleus. Journal of Neurophysiology, 67, 547–560.

    Article  CAS  PubMed  Google Scholar 

  • Shinoda, Y., Sugiuchi, Y., Izawa, Y., & Hata, Y. (2006). Long descending motor tract axons and their control of neck and axial muscles. Progress in Brain Research, 151, 527–561.

    Article  PubMed  Google Scholar 

  • Shinoda, Y., Yokota, J., & Futami, T. (1981). Divergent projection of individual corticospinal axons to motoneurons of multiple muscles in the monkey. Neuroscience Letters, 23, 7–12.

    Article  CAS  PubMed  Google Scholar 

  • Sparks, D. L., & Mays, L. E. (1981). The role of the monkey superior colliculus in the control of saccadic eye movements a current perspective. In A. F. Fuchs & W. Becker (Eds.), Progress in oculomotor research (Vol. 12, pp. 137–144). Elsevier North Holland.

    Google Scholar 

  • Sprague, J. M., & Chambers, W. W. (1954). Control of posture by reticular formation and cerebellum in the intact, anesthetized and unanesthetized and in the decerebrate cat. Amer J Physiol, 176, 52–64.

    Article  CAS  PubMed  Google Scholar 

  • Sugihara, I., & Shinoda, Y. (2004). Molecular, topographic, and functional organization of the cerebellar cortex: A study with combined aldolase C and olivocerebellar labeling. The Journal of Neuroscience, 24, 8771–8785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugihara, I., & Shinoda, Y. (2007). Molecular, topographic, and functional organization of the cerebellar nuclei: Analysis by three dimensional mapping of olivocerebellar projection and aldolase C labeling. The Journal of Neuroscience, 27, 9696–9710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugihara, I., Wu, H., & Shinoda, Y. (1996). Morphology of axon collaterals of single climbing fibers in the deep cerebellar nuclei of the rat. Neuroscience Letters, 217, 33–36.

    Article  CAS  PubMed  Google Scholar 

  • Sugihara, I., Wu, H.-S., & Shinoda, Y. (1999). Morphology of single olivocerebellar axons labeled with biotinylated dextran amine in the rat. The Journal of Comparative Neurology, 414, 131–148.

    Article  CAS  PubMed  Google Scholar 

  • Sugihara, I., Wu, H., & Shinoda, Y. (2001). The entire trajectories of single olivocerebellar axons in the cerebellar cortex and their contribution to cerebellar compartmentalization. The Journal of Neuroscience, 21, 7715–7723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimoto, T., Mizuno, N., & Itoh, K. (1981). An autoradiographic study on the terminal distribution of cerebellothalamic fibers in the cat. Brain Research, 215, 29–47.

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto, T., Mizuno, N., & Uchida, K. (1982). Distribution of cerebellar fiber terminals in the midbrain visuomotor areas: An autoradiographic study in the cat. Brain Research, 238, 353–370.

    Article  CAS  PubMed  Google Scholar 

  • Sugiuchi, Y., Izawa, Y., Takahashi, M., Na, J., & Shinoda, Y. (2005). Physiological characterization of synaptic inputs to inhibitory burst neurons from the rostral and caudal superior colliculus. Journal of Neurophysiology, 93, 697–712.

    Article  CAS  PubMed  Google Scholar 

  • Sugiuchi, Y., Kakei, S., & Shinoda, Y. (1992). Spinal commissural neurons mediating vestibular input to neck motoneurons in the cat cervical spinal cord. Neuroscience Letters, 145, 221–224.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, M., & Shinoda, Y. (2018). Brain stem neural circuits of horizontal and vertical saccade systems and their frame of reference. Neuroscience, 392, 281–328.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, M., & Shinoda, Y. (2021). Neural circuits of inputs and outputs of the cerebellar cortex and nuclei. Neuroscience, 462, 70–88.

    Google Scholar 

  • Takahashi, M., Sugiuchi, Y., & Shinoda, Y. (2010). Topographic organization of excitatory and inhibitory commissural connections in the superior colliculi and their functional roles in saccade generation. Journal of Neurophysiology, 104, 3146–3167.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, M., Sugiuchi, Y., & Shinoda, Y. (2014). Convergent synaptic inputs from the caudal fastigial nucleus and the superior colliculus onto pontine and pontomedullary reticulospinal neurons. Journal of Neurophysiology, 111, 849–867.

    Article  PubMed  Google Scholar 

  • Thach, W. T., Goodkin, H. P., & Keating, J. G. (1992). The cerebellum and the adaptive coordination of movement. Annual Review of Neuroscience, 15, 403–442.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, D. M., Kaufman, R. P., Sprague, J. M., & Chambers, W. W. (1956). Experimental studies of the vermal cerebellar projections in the brain stem of the cat (fastigiobulbar tract). Journal of Anatomy, 90, 371–385.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trott, J. R., Apps, R., & Armstrong, D. M. (1998). Zonal organization of cortico-nuclear and nucleo-cortical projections of the paramedian lobule of the cat cerebellum. I. the C1 zone. Experimental Brain Research, 118, 298–315.

    Article  CAS  PubMed  Google Scholar 

  • Trott, J. R., & Armstrong, D. M. (1987). The cerebellar corticonuclear projection from lobule Vb/c of the cat anterior lobe: A combined electrophysiological and autoradiographic study. Experimental Brain Research, 68, 339–354.

    Article  CAS  PubMed  Google Scholar 

  • Uchida, K., Mizuno, N., Sugimoto, T., Itoh, K., & Kudo, M. (1983). Direct projections from the cerebellar nuclei to the superior colliculus in the rabbit: An HRP study. The Journal of Comparative Neurology, 216, 319–326.

    Article  CAS  PubMed  Google Scholar 

  • Veenman, C. L., Reiner, A., & Honig, M. G. (1992). Biotinylated dextran amine as an anterograde tracer for single and double labeling studies. Journal of Neuroscience Methods, 41, 239–254.

    Article  CAS  PubMed  Google Scholar 

  • Verhaart, W. J. C. (1964). A stereotactic atlas of the brain stem of the cat. Van Gorcum.

    Google Scholar 

  • Voogd, J. (1964). The cerebellum of the cat. Van Gorcum.

    Google Scholar 

  • Voogd, J. (1967). Comparative aspects of the structure and fibre connexions of the mammalian cerebellum. Progress in Brain Research, 25, 94–135.

    Article  CAS  PubMed  Google Scholar 

  • Voogd, J. (1969). The importance of fiber connections in the comparative anatomy of the mammalian cerebellum. In R. Llinás (Ed.), Neurobiology of cerebellar evolution and development (pp. 493–514). A.M.A.E.R.F. Institute for Biomedical Research.

    Google Scholar 

  • Voogd, J. (2016). Deiters’ nucleus. Its role in cerebellar ideogenesis. Cerebellum, 15, 54–66. 

    Google Scholar 

  • Voogd, J., & Bigaré, F. (1980). Topographical distribution of olivary and corticonuclear fibers in the cerebellum: A review. In J. Courville et al. (Eds.), The inferior Olivary nucleus (pp. 207–234). New York.

    Google Scholar 

  • Voogd, J., Hess, D. T., & Marani, E. (1987). The parasagittal zonation of the cerebellar cortex in cat and monkey: Topography, distribution of acetylcholinesterase, and development. In J. S. King (Ed.), New concepts in cerebellar neurobiology. Liss.

    Google Scholar 

  • Voogd, J., Pardoe, J., Ruigrok, T. J., & Apps, R. (2003). The distribution of climbing and mossy fiber collateral branches from the copula pyramidis and the paramedian lobule: Congruence of climbing fiber cortical zones and the pattern of zebrin banding within the rat cerebellum. The Journal of Neuroscience, 23, 4645–4656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voogd, J., & Ruigrok, T. J. H. (2004). The organization of the corticonuclear and olivocerebellar climbing fiber projections to the rat cerebellar vermis: The congruence of projection zones and the zebrin pattern. Journal of Neurocytology, 33, 5–21.

    Article  PubMed  Google Scholar 

  • Voogd, J., Shinoda, Y., Ruigorok, T., & Sugihara, I. (2013). Cerebellar nuclei and the inferior olivary nuclei: Organization and connections. In M. Manto, D. L. Gruol, J. Schmahmann, N. Koibuchi, & F. Rossi (Eds.), Handbook of the cerebellum and cerebellar disorders (Vol. 1, pp. 377–436). Springer Netherland.

    Chapter  Google Scholar 

  • Walberg, F., & Jansen, J. (1961). Cerebellar corticovestibular fibers in the cat. Experimental Neurology, 3, 32–52.

    Article  CAS  PubMed  Google Scholar 

  • Walberg, F., Pompeiano, O., Brodal, A., & Jansen, J. (1962a). The fastigiovestibular projection in the cat. An experimental study with silver impregnation methods. The Journal of Comparative Neurology, 118, 49–76.

    Google Scholar 

  • Walberg, F., Pompeiano, O., Westrum, L. E., & Hauglie-Hanssen, E. (1962b). Fastigioreticular fibers I cat. An experimental study in silver methods. The Journal of Comparative Neurology, 119, 187–199.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, T. M., & Ebner, F. F. (1973). Distribution of cerebellar and somatic lemniscal projections in the ventral nuclear complex of the Virginia opossum. The Journal of Comparative Neurology, 147, 427–446.

    Article  CAS  PubMed  Google Scholar 

  • Wannier, T., Kakei, S., & Shinoda, Y. (1992). Two modes of cerebellar input to the parietal cortex in the cat. Experimental Brain Research, 90, 241–252.

    Article  CAS  PubMed  Google Scholar 

  • Welker, W. (1987). Spatial organization of somatosensory projections to granular cell cerebellar cortex: Functional and connectional implications of fractured somatotopy. In J. S. King (Ed.), New concepts in cerebellar neurobiology. Liss.

    Google Scholar 

  • Wilson, V., Uchino, Y., Maunz, R. A., Susswein, A., & Fukushima, K. (1978). Properties and connections of cat fastigiospinal neuros. Experimental Brain Research, 32, 1–17.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, V., Uchino, Y., Susswein, A., & Fukushima, K. (1977). Properties of direct fastigospinal fibers in the cat. Brain Research, 126, 543–546.

    Article  CAS  PubMed  Google Scholar 

  • Wu, H., Sugihara, I., & Shinoda, Y. (1999). Projection patterns of single mossy fibers originating from the lateral reticular nucleus in the rat cerebellar cortex and nuclei. The Journal of Comparative Neurology, 411, 97–118.

    Article  CAS  PubMed  Google Scholar 

  • Yamada, J., & Noda, H. (1987). Afferent and efferent connections of the oculomotor cerebellar vermis in the macaque monkey. The Journal of Comparative Neurology, 265, 224–241.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank R. Veale for valuable comments in improving the manuscript. This study was supported by JSPS KAKENHI Grant Number JP19K06937 to MT, Grants-in-Aid for Promotion of Scientific Research from the Naito Foundation to MT and from Brain Science Foundation to MT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayu Takahashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Takahashi, M., Shinoda, Y. (2021). Fastigial Nucleus Input/Output Related to Motor Control. In: Mizusawa, H., Kakei, S. (eds) Cerebellum as a CNS Hub. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-75817-2_10

Download citation

Publish with us

Policies and ethics