Skip to main content

dK-Projection: Publishing Graph Joint Degree Distribution with Node Differential Privacy

Part of the Lecture Notes in Computer Science book series (LNAI,volume 12713)

Abstract

Network data has great significance for commercial and research purposes. However, most networks contain sensitive information about individuals, thereby requiring privacy-preserving mechanisms to publish network data while preserving data utility. In this paper, we study the problem of publishing higher-order network statistics, i.e., joint degree distribution, under strong mathematical guarantees of node differential privacy. This problem is known to be challenging, since even simple network statistics (e.g., edge count) can be highly sensitive to adding or removing a single node in a network. To address this challenge, we propose a general framework of publishing dK-distributions under node differential privacy, and develop a novel graph projection algorithm to transform graphs to \(\theta \)-bounded graphs for controlled sensitivity. We have conducted experiments to verify the utility enhancement and privacy guarantee of our proposed framework on four real-world networks. To the best of our knowledge, this is the first study to publish higher-order network statistics under node differential privacy, while enhancing network data utility.

Keywords

  • Data publishing
  • Node differential privacy
  • dK-distributions

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-75765-6_29
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-75765-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Notes

  1. 1.

    Network datasets are available at http://snap.stanford.edu/data/index.html.

References

  1. Blocki, J., Blum, A., Datta, A., Sheffet, O.: Differentially private data analysis of social networks via restricted sensitivity. In: ITCS, pp. 87–96 (2013)

    Google Scholar 

  2. Clauset, A., Moore, C., Newman, M.E.: Hierarchical structure and the prediction of missing links in networks. Nature 453(7191), 98 (2008)

    CrossRef  Google Scholar 

  3. Day, W.Y., Li, N., Lyu, M.: Publishing graph degree distribution with node differential privacy. In: SIGMOD, pp. 123–138 (2016)

    Google Scholar 

  4. Ding, X., Zhang, X., Bao, Z., Jin, H.: Privacy-preserving triangle counting in large graphs. In: CIKM, pp. 1283–1292 (2018)

    Google Scholar 

  5. Dorogovtsev, S., Mendes, J., et al.: Evolution of Networks: From Biological Nets to the Internet and www. OUP Catalogue, Oxford (2013)

    MATH  Google Scholar 

  6. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14

    CrossRef  Google Scholar 

  7. Hay, M., Li, C., Miklau, G., Jensen, D.: Accurate estimation of the degree distribution of private networks. In: ICDM, pp. 169–178 (2009)

    Google Scholar 

  8. Iftikhar, M., Wang, Q., Lin, Y.: Publishing differentially private datasets via stable microaggregation. In: EDBT, pp. 662–665 (2019)

    Google Scholar 

  9. Iftikhar, M., Wang, Q., Lin, Yu.: dK-microaggregation: anonymizing graphs with differential privacy guarantees. In: Lauw, H.W., Wong, R.C.-W., Ntoulas, A., Lim, E.-P., Ng, S.-K., Pan, S.J. (eds.) PAKDD 2020, Part II. LNCS (LNAI), vol. 12085, pp. 191–203. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47436-2_15

    CrossRef  Google Scholar 

  10. Jorgensen, Z., Yu, T., Cormode, G.: Publishing attributed social graphs with formal privacy guarantees. In: SIGMOD, pp. 107–122 (2016)

    Google Scholar 

  11. Kasiviswanathan, S.P., Nissim, K., Raskhodnikova, S., Smith, A.: Analyzing graphs with node differential privacy. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 457–476. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_26

    CrossRef  Google Scholar 

  12. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? In: WWW, pp. 591–600 (2010)

    Google Scholar 

  13. Mahadevan, P., Hubble, C., Krioukov, D., Huffaker, B., Vahdat, A.: Orbis: rescaling degree correlations to generate annotated internet topologies. In: SIGCOMM, vol. 37, pp. 325–336 (2007)

    Google Scholar 

  14. Mahadevan, P., Krioukov, D., Fall, K., Vahdat, A.: Systematic topology analysis and generation using degree correlations. In: SIGCOMM, No. 4, pp. 135–146 (2006)

    Google Scholar 

  15. Mahadevan, P., Krioukov, D., Fomenkov, M., Dimitropoulos, X., Claffy, K., Vahdat, A.: The internet as-level topology: three data sources and one definitive metric. ACM SIGCOMM Comput. Commun. Rev. 36(1), 17–26 (2006)

    CrossRef  Google Scholar 

  16. Raskhodnikova, S., Smith, A.: Efficient lipschitz extensions for high-dimensional graph statistics and node private degree distributions. CoRR/1504.07912 (2015)

    Google Scholar 

  17. Sala, A., Zhao, X., Wilson, C., Zheng, H., Zhao, B.Y.: Sharing graphs using differentially private graph models. In: SIGCOMM, pp. 81–98 (2011)

    Google Scholar 

  18. Shen, E., Yu, T.: Mining frequent graph patterns with differential privacy. In: SIGKDD, pp. 545–553 (2013)

    Google Scholar 

  19. Ullman, J., Sealfon, A.: Efficiently estimating erdos-renyi graphs with node differential privacy. In: NeurIPS, pp. 3765–3775 (2019)

    Google Scholar 

  20. Wang, Y., Wu, X.: Preserving differential privacy in degree-correlation based graph generation. Trans. Data Priv. 6(2), 127–145 (2013)

    MathSciNet  Google Scholar 

  21. Xiao, Q., Chen, R., Tan, K.L.: Differentially private network data release via structural inference. In: SIGKDD, pp. 911–920 (2014)

    Google Scholar 

  22. Zheleva, E., Getoor, L.: Privacy in social networks: a survey. In: Aggarwal, C. (ed.) Social Network Data Analytics, pp. 277–306. Springer, Boston (2011). https://doi.org/10.1007/978-1-4419-8462-3_10

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masooma Iftikhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Iftikhar, M., Wang, Q. (2021). dK-Projection: Publishing Graph Joint Degree Distribution with Node Differential Privacy. In: , et al. Advances in Knowledge Discovery and Data Mining. PAKDD 2021. Lecture Notes in Computer Science(), vol 12713. Springer, Cham. https://doi.org/10.1007/978-3-030-75765-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75765-6_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75764-9

  • Online ISBN: 978-3-030-75765-6

  • eBook Packages: Computer ScienceComputer Science (R0)