Skip to main content

Applied Machine Learning in Operations Management

  • Chapter
  • First Online:
Innovative Technology at the Interface of Finance and Operations

Part of the book series: Springer Series in Supply Chain Management ((SSSCM,volume 11))

Abstract

The field of operations management has witnessed a fast-growing trend of data analytics in recent years. In particular, spurred by the increasing availability of data and methodological advancement in machine learning, a large body of recent literature in this field takes advantage of machine learning techniques for analyzing how firms should operate. In this chapter, we review applications of different machine learning methods, including supervised learning, unsupervised learning, and reinforcement learning, in various areas of operations management. We highlight how both supervised and unsupervised learning shape operations management research in both descriptive and prescriptive analyses. We also emphasize how different variants of reinforcement learning are applied in diverse operational decision problems. We then identify several exciting future directions at the intersection of machine learning and operations management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi-Yadkori, Y., Pál, D., & Szepesvári, C. (2011). Improved algorithms for linear stochastic bandits. In Advances in Neural Information Processing Systems (pp. 2312–2320).

    Google Scholar 

  • Agrawal, S., Avadhanula, V., Goyal, V., & Zeevi, A. (2019). MNL-bandit: A dynamic learning approach to assortment selection. Operations Research, 67(5), 1453–1485.

    Google Scholar 

  • Agrawal, S., & Devanur, N. R. (2019). Bandits with global convex constraints and objective. Operations Research, 67(5), 1486–1502.

    Google Scholar 

  • Agrawal, S., & Jia, R. (2017) Optimistic posterior sampling for reinforcement learning: Worst-case regret bounds. In Advances in Neural Information Processing Systems (pp. 1184–1194).

    Google Scholar 

  • Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data (pp. 207–216).

    Google Scholar 

  • Alley, M., Biggs, M., Hariss, R., Herrmann, C., Li, M., & Perakis, G. (2019). Pricing for heterogeneous products: Analytics for ticket reselling. Working paper, Pennsylvania State University

    Google Scholar 

  • Anderer, A., Bastani, H., & Silberholz, J. (2019). Adaptive clinical trial designs with surrogates: When should we bother? Working paper, University of Pennsylvania.

    Google Scholar 

  • Ang, E., Kwasnick, S., Bayati, M., Plambeck, E. L., & Aratow, M. (2016). Accurate emergency department wait time prediction. Manufacturing & Service Operations Management, 18(1), 141–156.

    Google Scholar 

  • Angrist, J. D., & Pischke, J. S. (2008). Mostly harmless econometrics: An empiricist’s companion. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Athey, S., & Imbens, G. (2016). Recursive partitioning for heterogeneous causal effects. Proceedings of the National Academy of Sciences, 113(27), 7353–7360.

    Google Scholar 

  • Auer, P., Jaksch, T., & Ortner, R. (2009). Near-optimal regret bounds for reinforcement learning. In Advances in Neural Information Processing Systems (pp. 89–96).

    Google Scholar 

  • Auer, P., & Ortner, R. (2010). UCB revisited: Improved regret bounds for the stochastic multi-armed bandit problem. Periodica Mathematica Hungarica, 61(1–2), 55–65.

    Google Scholar 

  • Baardman, L., Levin, I., Perakis, G., & Singhvi, D. (2017). Leveraging comparables for new product sales forecasting. Working paper, University of Michigan – Ann Arbor.

    Google Scholar 

  • Bastani, H. (2021). Predicting with proxies: Transfer learning in high dimension. Management Science, 67(5), 2964–2984. INFORMS.

    Google Scholar 

  • Bastani, H., & Bayati, M. (2020). Online decision making with high-dimensional covariates. Operations Research, 68(1), 276–294.

    Google Scholar 

  • Bastani, H., Bayati, M., & Khosravi, K. (2020). Mostly exploration-free algorithms for contextual bandits. Management Science, Forthcoming.

    Google Scholar 

  • Bastani, H., Harsha, P., Perakis, G., & Singhvi, D. (2018). Sequential learning of product recommendations with customer disengagement. Working paper, University of Pennsylvania.

    Google Scholar 

  • Bastani, H., Simchi-Levi, D., & Zhu, R. (2019). Meta dynamic pricing: Learning across experiments. Working paper, University of Pennsylvania.

    Google Scholar 

  • Baum, L. E., & Petrie, T. (1966). Statistical inference for probabilistic functions of finite state Markov chains. The Annals of Mathematical Statistics, 37(6):1554–1563.

    Google Scholar 

  • Bellman, R. (1957). A Markovian decision process. Journal of Mathematics and Mechanics, 6(5), 679–684.

    Google Scholar 

  • Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798–1828.

    Google Scholar 

  • Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural probabilistic language model. Journal of Machine Learning Research, 3, 1137–1155.

    Google Scholar 

  • Berger, J. O. (2013). Statistical decision theory and Bayesian analysis. New York, NY: Springer Science & Business Media.

    Google Scholar 

  • Bernstein, F., Modaresi, S., & Sauré, D. (2019). A dynamic clustering approach to data-driven assortment personalization. Management Science, 65(5), 2095–2115.

    Google Scholar 

  • Bertsimas, D., Farias, V. F., & Trichakis, N. (2011). The price of fairness. Operations Research, 59(1), 17–31.

    Google Scholar 

  • Bertsimas, D., & Kallus, N. (2020). From predictive to prescriptive analytics. Management Science, 66(3), 1025–1044.

    Google Scholar 

  • Bertsimas, D., Kallus, N., Weinstein, A. M., & Zhuo, Y. D. (2017). Personalized diabetes management using electronic medical records. Diabetes Care, 40(2), 210–217.

    Google Scholar 

  • Besbes, O., Gur, Y., & Zeevi, A. (2014). Stochastic multi-armed-bandit problem with non-stationary rewards. In Advances in Neural Information Processing Systems (pp. 199–207).

    Google Scholar 

  • Bezdek, J. C. (1973). Fuzzy mathematics in pattern classification. PhD Thesis, Cornell University, Ithaca, NY.

    Google Scholar 

  • Biggs, M., & Hariss, R. (2018). Optimizing objective functions determined from random forests. Working paper, University of Virginia.

    Google Scholar 

  • Bishop, C. M. (2006). Pattern recognition and machine learning. Berlin: Springer

    Google Scholar 

  • Boute, R. N., Gijsbrechts, J., & Van Mieghem, J. A. (2022). Digital lean operations: Smart automation and artificial intelligence in financial services. In Babich, V., Birge, J., & Hilary, G. (Eds.), Innovative technology at the interface of Finance and Operations. Springer Series in Supply Chain Management. Springer Natures.

    Google Scholar 

  • Box, G. E.P., Jenkins, G., Reinsel, G. C. (1970). Time series analysis, forecasting and control. San Francisco, CA: Holden-Day.

    Google Scholar 

  • Brafman, R. I., & Tennenholtz, M. (2002). R-max—a general polynomial time algorithm for near-optimal reinforcement learning. Journal of Machine Learning Research, 3, 213–231.

    Google Scholar 

  • Breiman, L. (1996a). Bagging predictors. Machine Learning, 24(2), 123–140.

    Google Scholar 

  • Breiman, L. (1996b). Heuristics of instability and stabilization in model selection. The Annals of Statistics, 24(6), 2350–2383.

    Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Google Scholar 

  • Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. Monterey, CA: Wadsworth and Brooks.

    Google Scholar 

  • Breunig, M. M., Kriegel, H. P., Ng, R. T., & Sander, J. (2000). LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data (pp. 93–104).

    Google Scholar 

  • Buhmann, M. D. (2003). Radial basis functions: theory and implementations (vol. 12). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Burlig, F., Knittel, C., Rapson, D., Reguant, M., & Wolfram, C. (2020). Machine learning from schools about energy efficiency. Journal of the Association of Environmental and Resource Economists, 7(6), 1181–1217.

    Google Scholar 

  • Chen, Y. C., & Mišić, V. V. (2019). Decision forest: A nonparametric approach to modeling irrational choice. Working paper, University of California at Los Angeles.

    Google Scholar 

  • Chen, F., Liu, X., Proserpio, D., & Troncoso, I. (2020). Product2vec: Understanding product-level competition using representation learning. Working paper, University of South Carolina.

    Google Scholar 

  • Cheung, W. C., Simchi-Levi, D., & Zhu, R. (2018). Hedging the drift: Learning to optimize under non-stationarity. Available at SSRN 3261050.

    Google Scholar 

  • Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., & Robins, J. (2018). Double/debiased machine learning for treatment and structural parameters. The Econometrics Journal, 21(1), C1–C68.

    Google Scholar 

  • Chipman, H. A., George, E. I., McCulloch, R. E. (2010). Bart: Bayesian additive regression trees. The Annals of Applied Statistics, 4(1), 266–298.

    Google Scholar 

  • Ciocan, D. F., & Mišić, V. V. (2020). Interpretable optimal stopping. Management Science. https://doi.org/10.1287/mnsc.2020.3592

  • Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, 74(368), 829–836.

    Google Scholar 

  • Cleveland, W. S., & Devlin, S. J. (1988) Locally weighted regression: an approach to regression analysis by local fitting. Journal of the American Statistical Association, 83(403), 596–610.

    Google Scholar 

  • Cohen, M., Jiao, K., & Zhang, R. P. (2019). Data aggregation and demand prediction. Working paper, McGill University.

    Google Scholar 

  • Cohen, M. C., Lobel, I., & Paes Leme, R. (2020). Feature-based dynamic pricing. Management Science, 66(11), 4921–4943. INFORMS.

    Google Scholar 

  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.

    Google Scholar 

  • Croston, J. D. (1972). Forecasting and stock control for intermittent demands. Journal of the Operational Research Society, 23(3), 289–303.

    Google Scholar 

  • Cui, R., Gallino, S., Moreno, A., & Zhang, D. J. (2018). The operational value of social media information. Production and Operations Management, 27(10), 1749–1769.

    Google Scholar 

  • Cui, R., Li, J., & Zhang, D. J. (2020). Reducing discrimination with reviews in the sharing economy: Evidence from field experiments on Airbnb. Management Science, 66(3), 1071–1094.

    Google Scholar 

  • Dai, J., & Shi, P. (2019). Inpatient overflow: An approximate dynamic programming approach. Manufacturing & Service Operations Management, 21(4), 894–911.

    Google Scholar 

  • Day, N. E. (1969). Estimating the components of a mixture of normal distributions. Biometrika, 56(3), 463–474.

    Google Scholar 

  • Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 1–22.

    Google Scholar 

  • Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., Fei-Fei, L. (2009). ImageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition (pp. 248–255). IEEE.

    Google Scholar 

  • Doudchenko, N., Zhang, M., Drynkin, E., Airoldi, E., Mirrokni, V., Pouget-Abadie, J. (2020). Causal inference with bipartite designs. Working paper, Massachusetts Institute of Technology.

    Google Scholar 

  • Elmachtoub, A. N., & Grigas, P. (2017). Smart “predict, then optimize”. Working paper, Columbia University.

    Google Scholar 

  • Elmachtoub, A. N., Liang, J. C. N., & McNellis, R. (2020). Decision trees for decision-making under the predict-then-optimize framework. Working paper, Columbia University.

    Google Scholar 

  • Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Kdd (vol. 96, pp. 226–231).

    Google Scholar 

  • Farias, V. F., Jagabathula, S., & Shah, D. (2013). A nonparametric approach to modeling choice with limited data. Management Science, 59(2), 305–322.

    Google Scholar 

  • Farias, V. F., & Li, A. A. (2019). Learning preferences with side information. Management Science, 65(7), 3131–3149.

    Google Scholar 

  • Ferreira, K. J., Lee, B. H. A., & Simchi-Levi, D. (2016). Analytics for an online retailer: Demand forecasting and price optimization. Manufacturing & Service Operations Management, 18(1), 69–88.

    Google Scholar 

  • Fix, E. (1951). Discriminatory analysis: nonparametric discrimination, consistency properties. San Francisco, CA: USAF School of Aviation Medicine.

    Google Scholar 

  • Freund, Y. (1995). Boosting a weak learning algorithm by majority. Information and Computation, 121(2), 256–285.

    Google Scholar 

  • Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning. New York, NY: Springer Series in Statistics.

    Google Scholar 

  • Friedman, N., Geiger, D., & Goldszmidt, M. (1997) Bayesian network classifiers. Machine Learning, 29(2–3), 131–163.

    Google Scholar 

  • Fukushima, K. (2013). Training multi-layered neural network neocognitron. Neural Networks, 40, 18–31.

    Google Scholar 

  • Gardner Jr, E. S. (1985). Exponential smoothing: The state of the art. Journal of Forecasting, 4(1), 1–28.

    Google Scholar 

  • Gijsbrechts, J., Boute, R. N., Van Mieghem, J. A., & Zhang, D. (2019). Can deep reinforcement learning improve inventory management? Performance on dual sourcing, lost sales and multi-echelon problems. Working paper, Católica Lisbon School of Business and Economics.

    Google Scholar 

  • Gittins, J. C. (1979). Bandit processes and dynamic allocation indices. Journal of the Royal Statistical Society: Series B (Methodological), 41(2), 148–164.

    Google Scholar 

  • Glaeser, CK., Fisher, M., & Su, X. (2019). Optimal retail location: Empirical methodology and application to practice. Manufacturing & Service Operations Management, 21(1), 86–102.

    Google Scholar 

  • Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (pp. 315–323).

    Google Scholar 

  • Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (vol. 1). Cambridge, MA: MIT Press.

    Google Scholar 

  • Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Advances in Neural Information Processing Systems (pp. 2672–2680).

    Google Scholar 

  • Govindarajan, A., Sinha, A., & Uichanco, J. (2021). Distribution-free inventory risk pooling in a multilocation newsvendor. Management Science, 67(4), 2272–2291. INFORMS.

    Google Scholar 

  • Gur, Y., Momeni, A., & Wager, S. (2019). Smoothness-adaptive stochastic bandits. Technical Report, Stanford University.

    Google Scholar 

  • Hardt, M., Price, E., & Srebro, N. (2016). Equality of opportunity in supervised learning. In Advances in Neural Information Processing Systems (pp. 3315–3323).

    Google Scholar 

  • Hastie, T. J., & Tibshirani, R. J. (1990). Generalized additive models (vol. 43). London, UK: Chapman and Hall.

    Google Scholar 

  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on computer Vision and Pattern Recognition (pp. 770–778).

    Google Scholar 

  • Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527–1554.

    Google Scholar 

  • Ho, T. K. (1995). Random decision forests. In Proceedings of 3rd International Conference on Document Analysis and Recognition (vol. 1, pp. 278–282). IEEE.

    Google Scholar 

  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.

    Google Scholar 

  • Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55–67.

    Google Scholar 

  • Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79(8), 2554–2558.

    Google Scholar 

  • Hu, K., Acimovic, J., Erize, F., Thomas, D. J., & Van Mieghem, J. A. (2019). Forecasting new product life cycle curves: Practical approach and empirical analysis. Manufacturing & Service Operations Management, 21(1), 66–85.

    Google Scholar 

  • Ibrahim, R., & Kim, S. H. (2019). Is expert input valuable? The case of predicting surgery duration. Seoul Journal of Business, 25(2), 1–34. The Institute of Management Research, SNU.

    Google Scholar 

  • Ibrahim, R., Kim, S. H., & Tong, J. (2021). Eliciting human judgment for prediction algorithms. Management Science, 67(4), 2314–2325. INFORMS.

    Google Scholar 

  • Jacob, F., Zhang, D., Liu, X., & Zhang, N. (2018). Customer choice models versus machine learning: Finding optimal product displays on Alibaba. Operations Research, Working Paper. Washington University in St. Louis.

    Google Scholar 

  • Jagabathula, S., & Rusmevichientong, P. (2017). A nonparametric joint assortment and price choice model. Management Science, 63(9), 3128–3145.

    Google Scholar 

  • Jagabathula, S., & Vulcano, G. (2018). A partial-order-based model to estimate individual preferences using panel data. Management Science, 64(4), 1609–1628.

    Google Scholar 

  • Jagabathula, S., Subramanian, L., & Venkataraman, A. (2018). A model-based embedding technique for segmenting customers. Operations Research, 66(5), 1247–1267.

    Google Scholar 

  • Jin, C., Allen-Zhu, Z., Bubeck, S., & Jordan, M. I. (2018). Is q-learning provably efficient? In Advances in Neural Information Processing Systems (pp. 4863–4873).

    Google Scholar 

  • Johari, R., Li, H., & Weintraub, G. (2020). Experimental design in two-sided platforms: An analysis of bias. Working paper, Stanford University.

    Google Scholar 

  • Joulani, P., Gyorgy, A., Szepesvári, C. (2013). Online learning under delayed feedback. In International Conference on Machine Learning (pp. 1453–1461).

    Google Scholar 

  • Kaufman, L., & PJ, R. (1987). Clustering by means of medoids. Delft university of technology technical report, Delft University of Technology.

    Google Scholar 

  • Kearns, M., & Singh, S. (2002). Near-optimal reinforcement learning in polynomial time. Machine Learning, 49(2–3), 209–232.

    Google Scholar 

  • Keskin, N. B., & Zeevi, A. (2014). Dynamic pricing with an unknown demand model: Asymptotically optimal semi-myopic policies. Operations Research, 62(5), 1142–1167.

    Google Scholar 

  • Kleinberg, J. (2018). Inherent trade-offs in algorithmic fairness. In Abstracts of the 2018 ACM International Conference on Measurement and Modeling of Computer Systems (pp. 40–40).

    Google Scholar 

  • Kleinberg, R., & Leighton, T. (2003). The value of knowing a demand curve: Bounds on regret for online posted-price auctions. In Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, 2003 (pp. 594–605). IEEE.

    Google Scholar 

  • Knorr, E. M., Ng, R. T., & Tucakov, V. (2000). Distance-based outliers: Algorithms and applications. The VLDB Journal, 8(3–4), 237–253.

    Google Scholar 

  • Konda, V. R., & Tsitsiklis, J. N. (2000). Actor-critic algorithms. In Advances in Neural Information Processing Systems (pp. 1008–1014).

    Google Scholar 

  • Kramer, M. A. (1991). Nonlinear principal component analysis using autoassociative neural networks. AIChE Journal, 37(2), 233–243.

    Google Scholar 

  • Kroer, C., & Stier-Moses, N. E. (2022). Market equilibrium models in large-scale internet markets. In Babich, V., Birge, J., & Hilary, G. (Eds.), Innovative technology at the interface of Finance and Operations. Springer Series in Supply Chain Management. Springer Natures, Forthcoming.

    Google Scholar 

  • LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4), 541–551.

    Google Scholar 

  • Lewis, D. D., & Ringuette, M. (1994). A comparison of two learning algorithms for text categorization. In Third Annual Symposium on Document Analysis and Information Retrieval (vol. 33, pp. 81–93).

    Google Scholar 

  • Li, K. J., Fong, D. K., & Xu, S. H. (2011). Managing trade-in programs based on product characteristics and customer heterogeneity in business-to-business markets. Manufacturing & Service Operations Management, 13(1), 108–123.

    Google Scholar 

  • Liu, S., He, L., & Shen, Z. J. M. (2018). On-time last mile delivery: Order assignment with travel time predictors. Management Science, Forthcoming.

    Google Scholar 

  • Loughran, T., & McDonald, B. (2011). When is a liability not a liability? Textual analysis, dictionaries, and 10-ks. The Journal of Finance, 66(1), 35–65.

    Google Scholar 

  • Lu, Z., Pu, H., Wang, F., Hu, Z., & Wang, L. (2017). The expressive power of neural networks: A view from the width. In Advances in Neural Information Processing Systems (pp. 6231–6239).

    Google Scholar 

  • MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, 14 (pp. 281–297).

    Google Scholar 

  • Mandi, J., Demirović, E., Stuckey, P., & Guns, T. (2019). Smart predict-and-optimize for hard combinatorial optimization problems. Working paper, Vrije Universiteit Brussel.

    Google Scholar 

  • Marr, B. (2016). A short history of machine learning–every manager should read. http://tinyurl.com/gslvr6k

  • McCarthy, J., & Feigenbaum, E. A. (1990). In memoriam: Arthur Samuel: Pioneer in machine learning. AI Magazine, 11(3), 10–10.

    Google Scholar 

  • Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. Preprint arXiv:13013781.

    Google Scholar 

  • Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., & Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In International Conference on Machine Learning (pp. 1928–1937).

    Google Scholar 

  • Montoya, R., & Gonzalez, C. (2019). A hidden Markov model to detect on-shelf out-of-stocks using point-of-sale data. Manufacturing & Service Operations Management, 21(4), 932–948.

    Google Scholar 

  • Moon, T. K. (1996). The expectation-maximization algorithm. IEEE Signal Processing Magazine, 13(6), 47–60.

    Google Scholar 

  • Morales, D. R., & Wang, J. (2010). Forecasting cancellation rates for services booking revenue management using data mining. European Journal of Operational Research, 202(2), 554–562.

    Google Scholar 

  • Mintz, Y., Aswani, A., Kaminsky, P., Flowers, E., & Fukuoka, Y. (2020). Nonstationary bandits with habituation and recovery dynamics. Operations Research, 68(5), 1493–1516. INFORMS.

    Google Scholar 

  • Mišić, V.V. (2020). Optimization of tree ensembles. Operations Research, 68(5), 1605–1624.

    Google Scholar 

  • Nelder, J. A., & Wedderburn, R. W. (1972). Generalized linear models. Journal of the Royal Statistical Society: Series A (General), 135(3), 370–384.

    Google Scholar 

  • Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359.

    Google Scholar 

  • Pearson, K. (1901). LIII. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical Magazine and Journal of Science, 2(11), 559–572.

    Google Scholar 

  • PwC (2020). Internet advertising revenue report: Full year 2019 results & q1 2020 revenues. https://www.iab.com/wp-content/uploads/2020/05/FY19-IAB-Internet-Ad-Revenue-Report_Final.pdf

  • Queenan, C., Cameron, K., Snell, A., Smalley, J., & Joglekar, N. (2019). Patient heal thyself: Reducing hospital readmissions with technology-enabled continuity of care and patient activation. Production and Operations Management, 28(11), 2841–2853.

    Google Scholar 

  • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536.

    Google Scholar 

  • Rusmevichientong, P., Shen, Z. J. M., & Shmoys, D. B. (2010). Dynamic assortment optimization with a multinomial logit choice model and capacity constraint. Operations Research, 58(6), 1666–1680.

    Google Scholar 

  • Russo, D. J., Van Roy, B., Kazerouni, A., Osband, I., & Wen, Z. (2018). A tutorial on Thompson sampling (vol. 11). Hanover, MA: Now Publishers.

    Google Scholar 

  • van Ryzin, G., & Vulcano, G. (2015). A market discovery algorithm to estimate a general class of nonparametric choice models. Management Science, 61(2), 281–300.

    Google Scholar 

  • van Ryzin, G., & Vulcano, G. (2017). An expectation-maximization method to estimate a rank-based choice model of demand. Operations Research, 65(2), 396–407.

    Google Scholar 

  • Sahami, M., Dumais, S., Heckerman, D., & Horvitz, E. (1998). A Bayesian approach to filtering junk e-mail. In Learning for Text Categorization: Papers from the 1998 Workshop (pp. 98–105).

    Google Scholar 

  • Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2), 197–227.

    Google Scholar 

  • Scherer, D., Müller, A., & Behnke, S. (2010). Evaluation of pooling operations in convolutional architectures for object recognition. In International Conference on Artificial Neural Networks (pp. 92–101). Springer.

    Google Scholar 

  • Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015). Trust region policy optimization. In International Conference on Machine Learning (pp. 1889–1897).

    Google Scholar 

  • Shen, H., & Huang, J. Z. (2008). Interday forecasting and intraday updating of call center arrivals. Manufacturing & Service Operations Management, 10(3), 391–410.

    Google Scholar 

  • Shen, Z. J. M., Tang, C. S., Wu, D., Yuan, R., & Zhou, W. (2019). Jd. com: Transaction level data for the 2020 MSOM data driven research challenge. Working paper, University of California at Berkeley.

    Google Scholar 

  • Şimşek, A. S., & Topaloglu, H. (2018). An expectation-maximization algorithm to estimate the parameters of the Markov chain choice model. Operations Research, 66(3), 748–760.

    Google Scholar 

  • Slivkins, A. (2019). Introduction to multi-armed bandits. Technical Report, Microsoft Research, working Paper.

    Google Scholar 

  • Strehl, A. L., Li, L., Wiewiora, E., Langford, J., & Littman, M. L. (2006). Pac model-free reinforcement learning. In Proceedings of the 23rd International Conference on Machine Learning (pp. 881–888).

    Google Scholar 

  • Sun, L., Lyu, G., Yu, Y., & Teo, C. P. (2020). Cross-border e-commerce data set: Choosing the right fulfillment option. Manufacturing & Service Operations Management. https://doi.org/10.1287/msom.2020.0887

  • Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learning, 3(1), 9–44.

    Google Scholar 

  • Sutton, R. S., McAllester, D. A., Singh, S. P., & Mansour, Y. (2000). Policy gradient methods for reinforcement learning with function approximation. In Advances in Neural Information Processing Systems (pp. 1057–1063).

    Google Scholar 

  • Swaminathan, A., & Joachims, T. (2015). Counterfactual risk minimization: Learning from logged bandit feedback. In International Conference on Machine Learning (pp. 814–823).

    Google Scholar 

  • Taigman, Y., Yang, M., Ranzato, M., & Wolf, L. (2014). DeepFace: Closing the gap to human-level performance in face verification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1701–1708).

    Google Scholar 

  • Talluri, K., & Van Ryzin, G. (2004). Revenue management under a general discrete choice model of consumer behavior. Management Science, 50(1), 15–33.

    Google Scholar 

  • Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika, 25(3/4), 285–294.

    Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267–288.

    Google Scholar 

  • Ugander, J., & Yin, H. (2020). Randomized graph cluster randomization. Working paper, Stanford University.

    Google Scholar 

  • Varian, H. R. (2016). Causal inference in economics and marketing. Proceedings of the National Academy of Sciences, 113(27), 7310–7315.

    Google Scholar 

  • Vulcano, G., Van Ryzin, G., & Ratliff, R. (2012). Estimating primary demand for substitutable products from sales transaction data. Operations Research, 60(2), 313–334.

    Google Scholar 

  • Wager, S., & Athey, S. (2018). Estimation and inference of heterogeneous treatment effects using random forests. Journal of the American Statistical Association, 113(523), 1228–1242.

    Google Scholar 

  • Wang, G., Li, J., & Hopp, W. J. (2017). Personalized health care outcome analysis of cardiovascular surgical procedures. Working paper, The University of Texas at Dallas.

    Google Scholar 

  • Wang, G., Li, J., & Hopp, W. J. (2018). An instrumental variable tree approach for detecting heterogeneous treatment effects in observational studies. Working paper, The University of Texas at Dallas.

    Google Scholar 

  • Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236–244.

    Google Scholar 

  • Watkins, C. J. C. H. (1989). Learning from delayed rewards. PhD Thesis, King’s College, Cambridge, UK.

    Google Scholar 

  • Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine learning, 8(3–4), 279–292.

    Google Scholar 

  • Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning, 8(3–4), 229–256.

    Google Scholar 

  • Wu, Y., Shariff, R., Lattimore, T., Szepesvári, C. (2016). Conservative bandits. In International Conference on Machine Learning (pp. 1254–1262).

    Google Scholar 

  • Wylie, C. (2018). The history of neural networks and AI: Part II. https://opendatascience.com/the-history-of-neural-networks-and-ai-part-ii

  • Ye, Z., Zhang, D., Zhang, H., Zhang, R. P., Chen, X., Xu, Z. (2020). Cold start on online advertising platforms: Data-driven algorithms and field experiments. Working paper, University of Illinois at Urbana-Champaign.

    Google Scholar 

  • Zhang, B., Hsu, M., & Dayal, U. (1999). K-harmonic means-a data clustering algorithm. Hewlett-Packard labs Technical Report HPL-1999-124, Hewlett-Packard.

    Google Scholar 

  • Zhang, D., Hu, M., Liu, X., Wu, Y., & Li, Y. (2020). NetEase cloud music data. Manufacturing & Service Operations Management. https://doi.org/10.1287/msom.2020.0923

  • Zhang, S., Lee, D., Singh, P. V., & Srinivasan, K. (2016). How much is an image worth? An empirical analysis of property’s image aesthetic quality on demand at Airbnb. Working paper, Carnegie Mellon University.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Editors

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bastani, H., Zhang, D.J., Zhang, H. (2022). Applied Machine Learning in Operations Management. In: Babich, V., Birge, J.R., Hilary, G. (eds) Innovative Technology at the Interface of Finance and Operations. Springer Series in Supply Chain Management, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-75729-8_7

Download citation

Publish with us

Policies and ethics