Skip to main content

Achromatic Diffractive Optical Elements (DOEs) for Broadband Applications

  • Chapter
  • First Online:
Nanocomposites as Next-Generation Optical Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 316))

Abstract

The integration of diffractive optical elements (DOEs) into a broadband optical system can often allow for increasing the system’s performance, reducing its size, or its complexity. However, despite considerable efforts to develop different technologies for DOEs, they still remain highly underutilized in broadband imaging system. This is because DOEs that maintain high diffraction efficiencies across the full range of wavelengths, angles of incidence (AOIs), and grating periods required for different optical systems are currently not available. Since the wavelength dependence of the efficiency is fundamentally linked to the dispersion of the phase delay \((\phi (\lambda )\)), this leads to the question of whether the dispersion engineering capabilities of nanocomposites could make such materials an enabling technology for finally unlocking the full potential of DOEs for optical design. In this chapter, I address this question as my first advanced application for nanocomposites. At the same time, my second goal in this chapter is to not restrict myself to one material platform and embodiment of DOEs, but also develop general concepts for how DOEs for broadband systems can be designed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Werdehausen, S. Burger, I. Staude, T. Pertsch, M. Decker, Dispersion-engineered nanocomposites enable achromatic diffractive optical elements. Opt. 6(8), 1031 (2019)

    Google Scholar 

  2. D. Werdehausen, S. Burger, I. Staude, T. Pertsch, M. Decker, Flat optics in high numerical aperture broadband imaging systems. J. Opt. 22(6), 065607 (2020)

    Google Scholar 

  3. D. Werdehausen, S. Burger, I. Staude, T. Pertsch, M. Decker, General design formalism for highly efficient flat optics for broadband applications. Opt. Exp. 28(5), 6452–6468 (2020)

    Article  Google Scholar 

  4. T. Ogata, R. Yagi, N. Nakamura, Y. Kuwahara, S. Kurihara, Modulation of polymer refractive indices with diamond nanoparticles for metal-free multilayer film mirrors. ACS Appl. Mater. Interfaces 4(8), 3769–72 (2012)

    Article  CAS  Google Scholar 

  5. H. Liu, X. Zeng, X. Kong, S. Bian, J. Chen, A simple two-step method to fabricate highly transparent ITO/polymer nanocomposite films. Appl. Surface Sci. 258(22), 8564–8569 (2012)

    Article  CAS  Google Scholar 

  6. E. Ōsawa, Recent progress and perspectives in single-digit nanodiamond. Diamond Related Mater. 16(12), 2018–2022 (2007)

    Article  Google Scholar 

  7. Z. Chen, Pixelligent zirconia nano-crystals for OLED applications, in white paper (2014)

    Google Scholar 

  8. D. Russel, A. Stabell, Scaling-up pixelligent nanocrystal dispersions, in White Paper (2016)

    Google Scholar 

  9. Z. Chen, J. Wang, Pixelligent internal light extraction layer for OLED lighting, in White Paper (2014)

    Google Scholar 

  10. T. Stone, N. George, Hybrid diffractive-refractive lenses and achromats. Appl. Opt. 27(14), 2960–71 (1988)

    Article  CAS  Google Scholar 

  11. P. Lalanne, Waveguiding in blazed-binary diffractive elements. J. Opt. Soc. Am. A 16(10), 2517 (1999)

    Google Scholar 

  12. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois, Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Opt. Lett. 23(14), 1081 (1998)

    Google Scholar 

  13. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois, Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff. J. Opt. Soc. Am. A 16(5), 1143–1156 (1999)

    Article  Google Scholar 

  14. P. Lalanne, P. Chavel, Metalenses at visible wavelengths: past, present, perspectives. Laser Photon. Rev. 11(3), 1600295 (2017)

    Google Scholar 

  15. P. Lalanne, J.P. Hugonin, P. Chavel, Optical properties of deep lamellar Gratings: a coupled Bloch-mode insight. J. Lightwave Technol. 24(6), 2442–2449 (2006)

    Article  Google Scholar 

  16. M.-S. L. Lee, P. Lalanne, J.-C. Rodier, E. Cambril, Wide-field-angle behavior of blazed-binary gratings in the resonance domain. Opt. Lett. 25(23), 1690 (2000)

    Google Scholar 

  17. C. Ribot, M.-S.L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, P. Lalanne, Broadband and efficient diffraction. Adv. Opt. Mater. 1(7), 489–493 (2013)

    Article  Google Scholar 

  18. C. Sauvan, P. Lalanne, M.-S.L. Lee, Broadband blazing with artificial dielectrics. Opt. Lett. 29(14), 1593 (2004)

    Google Scholar 

  19. C.A. Palmer, E.G. Loewen, Diffraction Grating Handbook (Newport Corporation New York, 2005)

    Google Scholar 

  20. G.J. Swanson, Binary Optics Technology: The Theory and Design of Multi-level Diffractive Optical Elements (Report, Lincoln Laboratory Massachusetts Institute of Technology, 1989)

    Google Scholar 

  21. S. Banerji, M. Meem, A. Majumder, F.G. Vasquez, B. Sensale-Rodriguez, R. Menon, Imaging with flat optics: metalenses or diffractive lenses? Opt. 6(6), 805 (2019)

    Google Scholar 

  22. G. Kim, J.A. Dominguez-Caballero, R. Menon, Design and analysis of multi-wavelength diffractive optics. Opt. Exp. 20(3), 2814–23 (2012)

    Article  Google Scholar 

  23. N. Mohammad, M. Meem, X. Wan, R. Menon, Full-color, large area, transmissive holograms enabled by multi-level diffractive optics. Sci. Rep. 7(1), 5789 (2017)

    Google Scholar 

  24. P. Wang, N. Mohammad, R. Menon, Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing. Sci. Rep. 6, 21545 (2016)

    Google Scholar 

  25. H. Gross, W. Singer, M. Totzeck, F. Blechinger, B. Achtner, Handbook of Optical Systems, vol. 1 (Wiley-VCH, Berlin, 2005)

    Google Scholar 

  26. A. Small, Spherical aberration, coma, and the Abbe sine condition for physicists who don’t design lenses. Am. J. Phys. 86(7), 487–494 (2018)

    Article  Google Scholar 

  27. M. Decker, W.T. Chen, T. Nobis, A.Y. Zhu, M. Khorasaninejad, Z. Bharwani, F. Capasso, J. Petschulat, Imaging performance of polarization-insensitive metalenses. ACS Photon. (2019)

    Google Scholar 

  28. H. Liang, A. Martins, B.-H.V. Borges, J. Zhou, E.R. Martins, J. Li, T.F. Krauss, High performance metalenses: numerical aperture, aberrations, chromaticity, and trade-offs. Optica 6(12), 1461–1470 (2019)

    Article  CAS  Google Scholar 

  29. W.T. Chen, A.Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, F. Capasso, A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13(3), 220–226 (2018)

    Article  CAS  Google Scholar 

  30. W.T. Chen, A.Y. Zhu, J. Sisler, Z. Bharwani, F. Capasso, A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun. 10(1), 355 (2019)

    Google Scholar 

  31. W.T. Chen, A.Y. Zhu, J. Sisler, Y.W. Huang, K.M.A. Yousef, E. Lee, C.W. Qiu, F. Capasso, Broadband achromatic metasurface-refractive optics. Nano Lett. 18(12), 7801–7808 (2018)

    Article  CAS  Google Scholar 

  32. M. Khorasaninejad, Z. Shi, A.Y. Zhu, W.T. Chen, V. Sanjeev, A. Zaidi, F. Capasso, Achromatic Metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett. 17(3), 1819–1824 (2017)

    Article  CAS  Google Scholar 

  33. S. Wang et al., A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13(3), 227–232 (2018)

    Article  CAS  Google Scholar 

  34. J.A. Davison, M.J. Simpson, History and development of the apodized diffractive intraocular lens. J. Cataract Refractive Surgery 32(5), 849–58 (2006)

    Article  Google Scholar 

  35. A.A. Kazemi, B. Kress, T. Starner, B.C. Kress, S. Thibault, A review of head-mounted displays (HMD) technologies and applications for consumer electronics, in Proceedings SPIE 8720, Photonic Applications for Aerospace, Commercial, and Harsh Environments IV (2013), p. 87200A

    Google Scholar 

  36. G.I. Greisukh, E.G. Ezhov, A.V. Kalashnikov, S.A. Stepanov, Diffractive-refractive correction units for plastic compact zoom lenses. Appl. Opt. 51(20), 4597–604 (2012)

    Article  CAS  Google Scholar 

  37. G.I. Greisukh, E.G. Ezhov, I.A. Levin, S.A. Stepanov, Design of achromatic and apochromatic plastic micro-objectives. Appl. Opt. 49(23), 4379–84 (2010)

    Article  Google Scholar 

  38. T. Nakai, H. Ogawa, Research on multi-layer diffractive optical elements and their application to camera lenses, in Diffractive Optics and Micro-Optics. Optical Society of America, 2002, DMA2

    Google Scholar 

  39. G.I. Greisukh, E.G. Ezhov, S.A. Stepanov, Diffractive-refractive hybrid corrector for achroand apochromatic corrections of optical systems. Appl. Opt. 45(24), 6137 (2006)

    Google Scholar 

  40. J.M. Trapp, T.G. Jabbour, G. Kelch, T. Pertsch, M. Decker, Hybrid refractive holographic single vision spectacle lenses. J. Eur. Opt. Soc.-Rapid Publ. 15(1), 14 (2019)

    Google Scholar 

  41. S. Schmidt, S. Thiele, A. Herkommer, A. Tunnermann, H. Gross, Rotationally symmetric formulation of the wave propagation method-application to the straylight analysis of diffractive lenses. Opt. Lett. 42(8), 1612–1615 (2017)

    Article  CAS  Google Scholar 

  42. R. Kingslake, Lenses in Photography: The Practical Guide to Optics for Photographers (Barnes, 1963)

    Google Scholar 

  43. N. Sultanova, S. Kasarova, I. Nikolov, Dispersion properties of optical polymers. Acta Physica Polonica-Ser. General Phys. 116(4), 585 (2009)

    Google Scholar 

  44. Schott, Optical Glass 2020. Technical Report Schott AG (2020)

    Google Scholar 

  45. P. Hartmann, Optical glass: deviation of relative partial dispersion from the normal line-need for a common definition. Opt. Eng. 54(10), 105112 (2015)

    Google Scholar 

  46. O. Sandfuchs, R. Brunner, D. Pätz, S. Sinzinger, J. Ruoff, Rigorous analysis of shadowing effects in blazed transmission gratings. Opt. Lett. 31(24), 3638 (2006)

    Google Scholar 

  47. M.T. Gale, Replication techniques for diffractive optical elements. Microelectron. Eng. 34(3–4), 321–339 (1997)

    Article  CAS  Google Scholar 

  48. M. Decker, I. Staude, Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics. J. Opt. 18(10), 103001 (2016)

    Google Scholar 

  49. M. Decker, I. Staude, M. Falkner, J. Dominguez, D.N. Neshev, I. Brener, T. Pertsch, Y.S. Kivshar, High-efficiency dielectric Huygens’ surfaces. Advanced Optical Materials 3(6), 813–820 (2015)

    Article  CAS  Google Scholar 

  50. S.J. Byrnes, A. Lenef, F. Aieta, F. Capasso, Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light. Opt. Exp. 24(5), 5110–5124 (2016)

    Article  CAS  Google Scholar 

  51. P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, R. Devlin, Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Opt. 4(1), 139 (2017)

    Google Scholar 

  52. B. Groever, W.T. Chen, F. Capasso, Meta-lens doublet in the visible region. Nano Lett. 17(8), 4902–4907 (2017)

    Article  CAS  Google Scholar 

  53. M. Khorasaninejad, F. Capasso, Metalenses: Versatile multifunctional photonic components. Sci. 358(6367) (2017)

    Google Scholar 

  54. M. Khorasaninejad, W.T. Chen, R.C. Devlin, J. Oh, A.Y. Zhu, F. Capasso, Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352(6290), 1190–4 (2016)

    Article  CAS  Google Scholar 

  55. M. Khorasaninejad, A.Y. Zhu, C. Roques-Carmes, W.T. Chen, J. Oh, I. Mishra, R.C. Devlin, F. Capasso, Polarization-insensitive metalenses at visible wavelengths. Nano Lett. 16(11), 7229–7234 (2016)

    Article  CAS  Google Scholar 

  56. R. Sawant, P. Bhumkar, A.Y. Zhu, P. Ni, F. Capasso, P. Genevet, Mitigating chromatic dispersion with hybrid optical metasurfaces. Adv. Mater. 31(3), e1805555 (2019)

    Google Scholar 

  57. A. She, S. Zhang, S. Shian, D.R. Clarke, F. Capasso, Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv. 4(2), eaap9957 (2018)

    Google Scholar 

  58. N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334(6054), 333–7 (2011)

    Article  CAS  Google Scholar 

  59. A.Y. Zhu, W.-T. Chen, M. Khorasaninejad, J. Oh, A. Zaidi, I. Mishra, R.C. Devlin, F. Capasso, Ultra-compact visible chiral spectrometer with meta-lenses. APL Photon. 2(3), 036103 (2017)

    Google Scholar 

  60. A.I. Kuznetsov, A.E. Miroshnichenko, M.L. Brongersma, Y.S. Kivshar, B. Luk’yanchuk, Optically resonant dielectric nanostructures. Sci. 354(6314), aag2472 (2016)

    Google Scholar 

  61. D. Werdehausen, M. Decker, Diffraktives optisches Element, Verfahren zum Entwerfen einer effizienzachromatisierten diffraktiven Struktur und Verfahren zur Herstellung eines effizienzachromatisierten diffraktiven Elementes. German Patent Application DE102019109944.7 (2019)

    Google Scholar 

  62. D. Sell, J. Yang, S. Doshay, R. Yang, J.A. Fan, Large-angle, multifunctional metagratings based on freeform multimode geometries. Nano Lett. 17(6), 3752–3757 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Werdehausen .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Werdehausen, D. (2021). Achromatic Diffractive Optical Elements (DOEs) for Broadband Applications. In: Nanocomposites as Next-Generation Optical Materials. Springer Series in Materials Science, vol 316. Springer, Cham. https://doi.org/10.1007/978-3-030-75684-0_5

Download citation

Publish with us

Policies and ethics