Skip to main content

Fundamentals of Effective Materials and Diffractive Optics

  • Chapter
  • First Online:
Nanocomposites as Next-Generation Optical Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 316))

Abstract

In this chapter, I introduce the fundamental concepts and relationships from the different fields, including electrodynamics, optical design, materials science, and diffractive optics, which are central to the following chapters. This chapter is not intended to replace a textbook but should rather serve as a reference, which provides the readers with the relevant basics of fields with which they are not familiar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Russakoff, A derivation of the macroscopic Maxwell equations. Am. J. Phys. 38(10), 1188–1195 (1970)

    Article  Google Scholar 

  2. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999)

    Google Scholar 

  3. D. Werdehausen, S. Burger, I. Staude, T. Pertsch, M. Decker, Dispersion-engineered nanocomposites enable achromatic diffractive optical elements. Optica 6(8), 1031 (2019)

    Google Scholar 

  4. J. Mistrik, S. Kasap, H. E. Ruda, C. Koughia, J. Singh, Optical properties of electronic materials: fundamentals and characterization, in Springer Handbook of Electronic and Photonic Materials, ed. by P. Kasap Safa Capper (Springer, Cham, 2017), p. 1

    Google Scholar 

  5. H. Gross, W. Singer, M. Totzeck, F. Blechinger, B. Achtner, Handbook of Optical Systems, vol. 1 (Wiley-VCH, Berlin, 2005)

    Book  Google Scholar 

  6. T. Stone, N. George, Hybrid diffractive-refractive lenses and achromats. Appl. Opt. 27(14), 2960–71 (1988)

    Article  CAS  Google Scholar 

  7. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 2008)

    Google Scholar 

  8. X.G. Santiago, M. Hammerschmidt, S. Burger, C. Rockstuhl, I. Fernandez-Corbaton, L. Zschiedrich, Decomposition of scattered electromagnetic fields into vector spherical wave functions on surfaces with general shapes. Phys. Rev. B 99(4), 045406 (2019)

    Google Scholar 

  9. I. Fernandez-Corbaton, D. Beutel, C. Rockstuhl, A. Pausch, W. Klopper, Computation of electromagnetic properties of molecular ensembles. Chem. Phys. Chem. 21, 878 (2020)

    Google Scholar 

  10. D. Theobald, A. Egel, G. Gomard, U. Lemmer. Plane-wave coupling formalism for T-matrix simulations of light scattering by nonspherical particles. Phys. Rev. B 96(3), 033822 (2017)

    Google Scholar 

  11. M.I. Mishchenko, L. Liu, D.W. Mackowski, B. Cairns, G. Videen, Multiple scattering by random particulate media: exact 3D results. Opt. Exp. 15(6), 2822–2836 (2007)

    Article  Google Scholar 

  12. M.I. Mishchenko, L.D. Travis, A. Macke, Scattering of light by polydisperse, randomly oriented, finite circular cylinders. Appl. Opt. 35(24), 4927–4940 (1996)

    Article  CAS  Google Scholar 

  13. G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik 330(3), 377–445 (1908)

    Article  Google Scholar 

  14. V.A. Markel, Introduction to the Maxwell Garnett approximation: tutorial. J. Opt. Soc. Am. A 33(7), 1244–1256 (2016)

    Article  Google Scholar 

  15. P. Mallet, C.-A. Guérin, A. Sentenac. Maxwell-Garnett mixing rule in the presence of multiple scattering: Derivation and accuracy. Phys. Rev. B 72(1), 014205 (2005)

    Google Scholar 

  16. W.T. Doyle, Optical properties of a suspension of metal spheres. Phys. Rev. B 39(14), 9852 (1989)

    Google Scholar 

  17. R. Ruppin, Evaluation of extended Maxwell-Garnett theories. Opt. Commun. 182(4), 273–279 (2000)

    Article  CAS  Google Scholar 

  18. J.M.G. Cowie, V. Arrighi, Polymers: Chemistry and Physics of Modern Materials (CRC Press, Boca Raton, 2007)

    Book  Google Scholar 

  19. S. Li, M. Meng Lin, M.S. Toprak, D.K. Kim, M. Muhammed. Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev. 1(1), 5214

    Google Scholar 

  20. S.K. Kumar, R. Krishnamoorti, Nanocomposites: structure, phase behavior, and properties. Ann. Rev. Chem. Biomolecular Eng. 1(1), 37–58 (2010)

    Google Scholar 

  21. G. Kickelbick, The search of a homogeneously dispersed material-the art of handling the organic polymer/metal oxide interface. J. Sol-Gel Sci. Technol 46(3), 281–290 (2008)

    Article  CAS  Google Scholar 

  22. P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B.C. Benicewicz, R.W. Siegel, L.S. Schadler, TiO2 nanocomposites with high refractive index and transparency. J. Mater. Chem. 21(46), 18623–18629 (2011)

    Article  CAS  Google Scholar 

  23. P.H.C. Camargo, K.G. Satyanarayana, F. Wypych, Nanocomposites: synthesis, structure, properties and new application opportunities. Mater. Res. 12, 1–39 (2009)

    Article  CAS  Google Scholar 

  24. S.G. Advani, K.-T. Hsaio, Manufacturing Techniques for Polymer Matrix Composites (Woodhead Publishing Limited, 2012)

    Google Scholar 

  25. Z. Chen, Pixelligent Zirconia Nano-Crystals for OLED applications, in White Paper (2014)

    Google Scholar 

  26. D. Russel, A. Stabell. Scaling-up pixelligent nanocrystal dispersions, in White Paper (2016)

    Google Scholar 

  27. Z. Chen, J. Wang, Pixelligent internal light extraction layer for OLED lighting, in White Paper (2014)

    Google Scholar 

  28. Z. Chen, S. Monickam, M. Weinstein, Low chromatic aberration nanocomposite, in White Paper (2015)

    Google Scholar 

  29. C.A. Palmer, E.G. Loewen, Diffraction Grating Handbook (Newport Corporation New York, 2005)

    Google Scholar 

  30. T. Nakai, Diffractive Optical Element. Patent US6587272 (1999)

    Google Scholar 

  31. H. Ukuda, Optical material, and, optical element, optical system and laminated diffractive optical element using it. Patent US20050110830 (2005)

    Google Scholar 

  32. S. Thiele, C. Pruss, A.M. Herkommer, H. Giessen, 3D printed stacked diffractive microlenses, in Opt. Exp. 27(24), 35621 (2019)

    Google Scholar 

  33. M.T. Gale, Replication techniques for diffractive optical elements. Microelectron. Eng. 34(3–4), 321–339 (1997)

    Article  CAS  Google Scholar 

  34. T. Nakai, H. Ogawa, Research on multi-layer diffractive optical elements and their application to camera lenses, in Diffractive Optics and Micro-Optics. Optical Society of America, DMA2 (2002)

    Google Scholar 

  35. B.H. Kleemann, M. Seesselberg, J. Ruoff, Design concepts for broadband high-efficiency DOEs. J. Eur. Opt. Soc. Rapid Pub. 3 (2008)

    Google Scholar 

  36. M. Seesselberg, J. Ruoff, B.H. Kleemann, Diffractive optical element for colour sensor has multiple successive curvatures structure at right angles to extension direction. Patent DE102006007432 (2007)

    Google Scholar 

  37. J.M. Trapp, M. Decker, J. Petschulat, T. Pertsch, T.G. Jabbour, Design of a 2 diopter holographic progressive lens. Opt. Exp. 26(25), 32866–32877 (2018)

    Article  CAS  Google Scholar 

  38. W.C. Sweatt. Describing holographic optical elements as lenses. J. Opt. Soc. Am. 67(6), 803 (1977)

    Google Scholar 

  39. J.M. Trapp, T.G. Jabbour, G. Kelch, T. Pertsch, M. Decker, Hybrid refractive holographic single vision spectacle lenses. J. Eur. Opt. Soc.-Rapid Pub. 15(1), 14 (2019)

    Google Scholar 

  40. G.J. Swanson, Binary Optics Technology: The Theory and Design of Multi-Level Diffractive Optical Elements (Report, Lincoln Laboratory Massachusetts Institute of Technology, 1989)

    Google Scholar 

  41. S. Banerji, M. Meem, A. Majumder, F.G. Vasquez, B. Sensale-Rodriguez, R. Menon. Imaging with flat optics: metalenses or diffractive lenses? Opt. 6(6), 805 (2019)

    Google Scholar 

  42. G. Kim, J.A. Dominguez-Caballero, R. Menon, Design and analysis of multi-wavelength diffractive optics. Opt. Exp. 20(3), 2814–23 (2012)

    Article  Google Scholar 

  43. N. Mohammad, M. Meem, X. Wan, R. Menon, Full-color, large area, transmissive holograms enabled by multi-level diffractive optics, Sci. Rep. 7(1), 5789 (2017)

    Google Scholar 

  44. P. Wang, N. Mohammad, R. Menon, Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing. Sci. Rep. 6, 21545 (2016)

    Google Scholar 

  45. P. Lalanne, Waveguiding in blazed-binary diffractive elements. J. Opt. Soc. Am. A 16(10), 2517 (1999)

    Google Scholar 

  46. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings, Opt. Lett. 23(14), 1081 (1998)

    Google Scholar 

  47. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois, Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff. J. Opt. Soc. Am. A 16(5), 1143–1156 (1999)

    Article  Google Scholar 

  48. P. Lalanne, P. Chavel, Metalenses at visible wavelengths: past, present, perspectives. Laser Photonics Rev. 11(3), 1600295 (2017)

    Google Scholar 

  49. P. Lalanne, J.P. Hugonin, P. Chavel, Optical properties of deep lamellar Gratings: a coupled Bloch-mode insight. J. Lightwave Technol. 24(6), 2442–2449 (2006)

    Article  Google Scholar 

  50. M.-S. L. Lee, P. Lalanne, J.-C. Rodier, E. Cambril, Wide-field-angle behavior of blazed-binary gratings in the resonance domain. Opt. Lett. 25(23), 1690 (2000)

    Google Scholar 

  51. C. Ribot, M.-S.L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, P. Lalanne, Broadband and efficient diffraction. Adv. Opt. Mater. 1(7), 489–493 (2013)

    Article  Google Scholar 

  52. C. Sauvan, P. Lalanne, M.-S. L. Lee. Broadband blazing with artificial dielectrics. Opt. Lett. 29(14), 1593 (2004)

    Google Scholar 

  53. Y. Arieli, S. Noach, S. Ozeri, N. Eisenberg, Design of diffractive optical elements for multiple wavelengths. Appl. Opt. 37(26), 6174 (1998)

    Google Scholar 

  54. Y. Arieli, S. Ozeri, N. Eisenberg, S. Noach, Design of a diffractive optical element for wide spectral bandwidth. Opt. Lett. 23(11), 823 (1998)

    Google Scholar 

  55. D.A. Buralli, G.M. Morris, Effects of diffraction efficiency on the modulation transfer function of diffractive lenses. Appl. Opt. 31(22), 4389–96 (1992)

    Article  CAS  Google Scholar 

  56. J.A. Davison, M.J. Simpson, History and development of the apodized diffractive intraocular lens. J. Cataract Refractive Surgery 32(5), 849–58 (2006)

    Article  Google Scholar 

  57. D. Faklis, G.M. Morris, Spectral properties of multiorder diffractive lenses. Appl. Opt. 34(14), 2462–2468 (1995)

    Article  CAS  Google Scholar 

  58. A.J. Glass, K.J. Weible, A. Schilling, H.P. Herzig, D.R. Lobb, J.W. Goodman, M. Chang, A.H. Guenther, T. Asakura, Achromatization of the diffraction efficiency of diffractive optical elements, in Proceedings SPIE 3749, 18th Congress of the International Commission for Optics, vol. 3749 (1999), pp. 378–379

    Google Scholar 

  59. G.I. Greisukh, E.G. Ezhov, A.V. Kalashnikov, S.A. Stepanov, Diffractive-refractive correction units for plastic compact zoom lenses. Appl. Opt. 51(20), 4597–604 (2012)

    Article  CAS  Google Scholar 

  60. G.I. Greisukh, E.G. Ezhov, S.A. Stepanov, Diffractive-refractive hybrid corrector for achroand apochromatic corrections of optical systems. Appl. Opt. 45(24), 6137 (2006)

    Google Scholar 

  61. C. Londono, P.P. Clark, Modeling diffraction efficiency effects when designing hybrid diffractive lens systems. Appl. Opt. 31(13), 2248–52 (1992)

    Article  CAS  Google Scholar 

  62. M.D. Missig, G.M. Morris, Diffractive optics applied to eyepiece design. Appl. Opt. 34(14), 2452–61 (1995)

    Article  CAS  Google Scholar 

  63. E. Noponen, J. Turunen, A. Vasara, Parametric optimization of multilevel diffractive optical elements by electromagnetic theory. Appl. Opt. 31(28), 5910–2 (1992)

    Article  CAS  Google Scholar 

  64. D.W. Sweeney, G.E. Sommargren, Harmonic diffractive lenses. Appl. Opt. 34(14), 2469–2475 (1995)

    Article  CAS  Google Scholar 

  65. T.K. Gaylord, M.G. Moharam, Analysis and applications of optical diffraction by gratings. Proc. IEEE 73(5), 894–937 (1985)

    Article  Google Scholar 

  66. O. Sandfuchs, R. Brunner, D. Pätz, S. Sinzinger, J. Ruoff, Rigorous analysis of shadowing effects in blazed transmission gratings. Opt. Lett. 31(24), 3638 (2006)

    Google Scholar 

  67. S. Schmidt, S. Thiele, A. Herkommer, A. Tunnermann, H. Gross, Rotationally symmetric formulation of the wave propagation method-application to the straylight analysis of diffractive lenses. Opt. Lett. 42(8), 1612–1615 (2017)

    Article  CAS  Google Scholar 

  68. D. Werdehausen, S. Burger, I. Staude, T. Pertsch, M. Decker, Flat optics in high numerical aperture broadband imaging systems. J. Opt. 22(6), 065607 (2020)

    Google Scholar 

  69. Schott, Optical Glass 2020. Tech. rep. Schott AG (2020)

    Google Scholar 

  70. N. Sultanova, S. Kasarova, I. Nikolov, Dispersion properties of optical polymers. Acta Phys. Polonica-Series A General Phys. 116(4), 585 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Werdehausen .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Werdehausen, D. (2021). Fundamentals of Effective Materials and Diffractive Optics. In: Nanocomposites as Next-Generation Optical Materials. Springer Series in Materials Science, vol 316. Springer, Cham. https://doi.org/10.1007/978-3-030-75684-0_2

Download citation

Publish with us

Policies and ethics