Skip to main content

Implementation of a Control System in a Dual Axis Cylindrical-Parabolic Solar Tracking System

  • Conference paper
  • First Online:
Proceedings of the 6th Brazilian Technology Symposium (BTSym’20) (BTSym 2020)

Abstract

When considering effects such as population growth, global warming, reduction of oil reservoirs, and the proposal of policies committed with zero carbon, it is indicated that the worldwide renewable and non-renewable energy supplies should be prepared to fulfill the upcoming energy demand. Thus one of the renewable energy sources that exhibit more technological growth is the photovoltaic solar energy. However, other alternatives such as solar tracking plants (STP) consist of various stages, one of which is the solar tracking system that is constituted by electronic control systems to guarantee its correct operation and stability to the solar trajectory. Thus, this study develops two control systems to verify features of oscillation and settling time when there are uncertain environmental conditions such as clear and cloudy sky global horizontal irradiation (GHI). Those control systems were implemented in a prototype developed in the laboratory, which meets the following features: solar trajectory tracking in an elevation and azimuth angle, cylindrical-parabolic solar capturing by means of reflective material and reflected rays receiver tube where the internal and external temperature data are measured and collected through a SD memory. Results show that the PI control system exhibits steady-state stability at 24 [ms] with an overshoot of 1,17%, which is an excellent condition in the trajectory with GHI (clear sky), and besides, it shows no oscillations in the presence of disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IEA (2019) World Energy Outlook 2019. IEA, París. https://www.iea.org/reports/world-energy-outlook-2019

  2. Barrero A (2019) El último informe de la Agencia Internacional de la Energía denuncia las contradicciones del sistema energético global. Energías Renovables, Jueves, 14 de noviembre de 2019. https://www.energias-renovables.com/panorama/el-ultimo-informe-de-la-agencia-internacional-20191114

  3. Shepard D (2019) Informe de la ONU. United nations department of public information, 405 East 42nd Street, New York, NY 10017. https://population.un.org/wpp/Publications/Files/WPP2019_PressRelease_ES.pdf

  4. United Nations (2019) Department of Economic and Social Affairs, Population Division. World Population Prospects, Demographic Profiles Volume II. https://population.un.org/wpp/Graphs/1_Demographic%20Profiles/World.pdf

  5. Poveda-Burgos GH, Molina KR, Ruiz JG (2017) Desarrollo de energías renovables en el Ecuador del siglo XXI, optimización de recursos económicos y conservación del medio ambiente. Rev Observ Econ Latinoamericana Ecuador. https://www.eumed.net/cursecon/ecolat/ec/2017/energias-renovables-ecuador.html

  6. Cevallos-Sierra J, Ramos-Martin J (2017) Spatial assessment of the potential of renewable energy: the case of Ecuador. Renew Sustain Energy Rev 81:1154–1165. https://doi.org/10.1016/j.rser.2017.08.015

    Article  Google Scholar 

  7. Echenique RA, Perino EJ, Odicino LA, Perelló DA, Murdocca RM (2018) Sistema de seguimiento solar para paneles fotovoltaicos. Avances Energías Renov Medio Ambiente 22:06

    Google Scholar 

  8. Mi Z, Chen J, Chen N, Bai Y, Fu R, Liu H (2016) Open-loop solar tracking strategy for high concentrating photovoltaic systems using variable tracking frequency. Energy Convers Manage 117:142–149. https://doi.org/10.1016/j.enconman.2016.03.009

    Article  Google Scholar 

  9. Xie F, Jiang W, Wang M (2019) Study on control strategy for solar tracking system using variable tracking frequency. Energie Solaris Sinica 40(4):1011–1020

    Google Scholar 

  10. Montalvo PE (2017) Diseño de un Sistema De Control Difuso de Seguimiento Solar de Dos Ejes. MS thesis, Sistemas de Control y Automatización Industrial, ESPOCH, City of Univ., Riobamba- Ecuador, July 2017

    Google Scholar 

  11. Zhang Q-X, Yu H-Y, Zhang Q-Y, Yang D (2015) A solar automatic tracking system that generates power for lighting greenhouses. Energies 8(7):7367–7380. https://doi.org/10.3390/en8077367. https://www.mdpi.com/1996-1073/8/7/7367

  12. Hijazi H, Mokhiamar O, Elsamni O (2016) Mechanical design of a low cost parabolic solar dish concentrator. Alex Eng J 55(1):1–11. https://doi.org/10.1016/j.aej.2016.01.028

    Article  Google Scholar 

  13. Shigley J, Mischke C, Hunter Brown T (2004) Power screws. In: Standard handbook of machine design, 3rd edn. McGraw-Hill, pp 1–12. Sec 13. https://www.accessengineeringlibrary.com/content/book/9780071441643/chapter/chapter13

  14. Budynas R, Nisbett J (2015) Screws, fasteners, and the design of nonpermanent joints. In: Shigley’s mechanical engineering design, sec 8. McGraw-Hill Education. pp 406–413. https://me.utep.edu/cmstewart/documents/ME3334/Lecture%2017%20-%20Screws%20and%20Bolts.pdf

  15. Beemkumar N, Yuvarajan D, Karthikeyan A et al (2019) Comparative experimental study on parabolic trough collector integrated with thermal energy storage system by using different reflective materials. J Therm Anal Calorim 137:941–948. https://doi.org/10.1007/s10973-018-07989-6

    Article  Google Scholar 

  16. Muzumil A, Ahmad W, Muzaffar A et al (2020) Experimental analysis of parabolic trough collector system with multiple receiver geometries and reflective materials. Therm Sci 2020:216–232. https://doi.org/10.2298/TSCI191202216A

    Article  Google Scholar 

  17. Asociación Latinoamericana de Acero (2010) Diseño de miembros de extracción. In: Especificación ANSI/AISC 360-10 para Construcciones de, Santiago de Chile, Chile, Alacero, pp 365–383. https://www.construccionenacero.com/sites/construccionenacero.com/files/publicacion/especificacion_ansi-aisc_360-10_para_construcciones_de_acero.pdf

  18. Kannaiyan S et al. (2020) Solar collectors modeling and controller design for solar thermal power plant. IEEE Access Multidisc 8:81425–81446. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9072405

  19. DR01 First Class pyrheliometer DR02 Fast response First Class pyrheliometer/User Manual, SENSOVANT smart sensing. Valencia, Esp, 2011, pp 1–20

    Google Scholar 

  20. de Barros RC, Callegari JMS, Mendonca DdC, Amorim WCS, Silva MP, Pereira HA (2018) Low-cost solar irradiance meter using LDR sensors. In: 2018 13th IEEE international conference on industry applications (INDUSCON), São Paulo, Brazil, pp 72–79. https://doi.org/10.1109/INDUSCON.2018.8627176

  21. Camacho EF, Berenguel M, Rubio FR, Martínez D (2012) Control básico de colectores cilindroparabólicos. In: Control de sistemas de energía solar. Avances en control industrial. Springer, Londres. https://bibliotecas.ups.edu.ec:2582/10.1007/978-0-85729-916-1_4

  22. Ordóñez F, Vaca D, López J (2019) Assessment of the solar resource in Andean regions by comparison between satellite estimation and ground measurements: study case of Ecuador. J Sustain Dev 12(4):62–75. https://doi.org/10.5539/jsd.v12n4p62

    Article  Google Scholar 

  23. Sengupta M, Xie Y, Lopez A, Habte A, Maclaurin G, Shelby (2018) The national solar radiation data base (NSRDB). Renew Sustain Energy Rev J 89:51–60. https://doi.org/10.1016/j.rser.2018.03.003

    Article  Google Scholar 

  24. Vaca D, Ordoñez F (2019) Mapa solar del Ecuador. Proyecto de investigación de la EPN:PIMI 15-06, Scinergy, pp 3–28. https://www.ingenieriaverde.org/wp-content/uploads/2020/01/Mapa_Solar_del_Ecuador_2019.pdfAuthor. F (2016) Article title. Journal 2(5):99–110

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Oñate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oñate, W., Catota, A., Simbaña, J., Caiza, G. (2021). Implementation of a Control System in a Dual Axis Cylindrical-Parabolic Solar Tracking System. In: Iano, Y., Saotome, O., Kemper, G., Mendes de Seixas, A.C., Gomes de Oliveira, G. (eds) Proceedings of the 6th Brazilian Technology Symposium (BTSym’20). BTSym 2020. Smart Innovation, Systems and Technologies, vol 233. Springer, Cham. https://doi.org/10.1007/978-3-030-75680-2_104

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75680-2_104

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75679-6

  • Online ISBN: 978-3-030-75680-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics