Skip to main content

Abstract

This Chapter is devoted to finding an approximate solution to the cylindrical Liouville-Bratu-Gelfand problem, a particular boundary value problem related to the classical nonlinear Bratu problem. The Bratu problem has a rich history and served as a test for different approximate and numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Gidas, W.M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68, 209–243 (1979)

    Article  Google Scholar 

  2. J. Jacobsen. K. Schmitt, The Liouville-Bratu-Gelfand problem for radial operators. J. Diff. Eqs. 184, 289–298 (2002)

    Google Scholar 

  3. J. Liouville, Sur l’équation aux derivées partielles. J. de Math. 18, 71–72 (1853)

    Google Scholar 

  4. G. Bratu, Sur les équations intégrales non-linéares. Bull. Math. Soc. So. France 42, 113–142 (1914)

    Article  Google Scholar 

  5. V. Marinca, N. Herisanu, The optimal homotopy asymptotic method. Engineering applications (Springer, Cham, 2015)

    Google Scholar 

  6. R. Buckmire, Application of a Mickens finite-difference scheme to the cylindrical Bratu-Gelfand problem. Numer. Methods Partial Differ. Equ. 19, 327–337 (2003)

    Article  Google Scholar 

  7. D.A. Frank-Kamenetsky, Diffusion and Heat Exchange in Chemical Kinetics (Princeton University Press, Princeton N. J., 1955).

    Book  Google Scholar 

  8. I.M. Gelfand, Some problems in the theory of quasi-linear equations. Amer. Math. Soc. Trans. Ser. 2(29), 295–381 (1963)

    Google Scholar 

  9. D.D. Joseph, T.S. Lundgren, Quasilinear Dirichlet problems driven by positive sources. Arch. Rat. Mech. Anal. 49, 241–269 (1973)

    Google Scholar 

  10. S. Chandrasekhar, An Introduction to the Study of Stellar Structure (Dover, 1967)

    Google Scholar 

  11. H. Caglar, N. Caglar, M. Özer, A. Valaristos, A.N. Miliou, A.N. Anagnostopoulos, Dynamics of the solution of Bratu’s equation. Nonlinear Anal. 71, 672–678 (2009)

    Article  Google Scholar 

  12. R. Jalilian, Non-polynomial spline method for solving Bratu’s problem. Comp. Phys. Comm. 181, 1868–1872 (2010)

    Article  CAS  Google Scholar 

  13. H.Q. Kafri, S.A. Khuri, Bratu’s problem: a novel approach using fined—point iterations and Green’s functions. Comp. Phys. Comm. 198, 97–104 (2016)

    Article  CAS  Google Scholar 

  14. S. Hichar, A. Guerfi, S. Donis, M.T. Meftah, Application of nonlinear Bratu’s equation in two and three dimensions to electrostatics. Report Math. Phys. 76(3), 283–295 (2015)

    Article  Google Scholar 

  15. J.P. Boyd, An analytical and numerical study of the two—dimensional Bratu equation. J. Sci. Comp. 1(2), 183–206 (1986)

    Article  Google Scholar 

  16. S.A. Odejide, Y.A.S. Aregbesola, A note on two dimensional Bratu problem. Kragujevac J. Math. 29, 49–56 (2006)

    Google Scholar 

  17. S. Abbasbandy, M.S. Hashemi, C.S. Liu, The Lie-group shooting method for solving the Bratu equation. Commun. Nonl. Sci. Numer Simulat. 16, 4238–4249 (2010)

    Article  Google Scholar 

  18. Y. Aksoy, M. Pakdemirli, New perturbation iteration solutions for Bratu type equations. Comput. Math. Appl. 59, 2802–2808 (2010)

    Article  Google Scholar 

  19. V. Ananthaswamy, L. Rajendran, Analytical solutions of some two-point nonlinear elliptic boundary value problem. Appl. Math. 3, 1044–1058 (2012)

    Article  Google Scholar 

  20. J. Rashidinia, N. Taher, Application of the Sinc approximation to the solution of Bratu’s problem. Int. J. Math. Modell. Comput. 2(3), 239–246 (2012)

    Google Scholar 

  21. J. Karkovski, Numerical experiments with the Bratu equation in one, two and three dimensions. Comput. Appl. Math. 32, 231–244 (2013)

    Article  Google Scholar 

  22. A. Mohsen, On the integral solution of the one-dimensional Bratu problem. J. Comput. Appl. Math. 251, 61–66 (2013)

    Article  Google Scholar 

  23. A.M. Wazwaz, The variational iteration method for solving two forms of Blasius equation on a half infinite domain. Appl. Math. Comput. 188, 485–499 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasile Marinca .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marinca, V., Herisanu, N., Marinca, B. (2021). Cylindrical Liouville-Bratu-Gelfand Problem. In: Optimal Auxiliary Functions Method for Nonlinear Dynamical Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-75653-6_27

Download citation

Publish with us

Policies and ethics