Skip to main content

Input of Terrestrial Material into Coastal Patagonian Waters and Its Effects on Phytoplankton Communities from the Chubut River Estuary (Argentina)

  • 616 Accesses

Abstract

Riverine and eolian-dust inputs to coastal waters are influenced by both rainfall and land-use (i.e., deforestation, agriculture, urbanization). Transport of sediments and nutrients from rivers to the oceans are well- documented worldwide, and it is of major management concern because coastal ecosystems provide a great variety of products and services to humankind. Episodic, but extreme rainfall or dust-storm events can generate abrupt pulsed riverine/eolian discharge events, thus increasing nutrients and sediments in surface waters. It is expected that they will be intensified in the upcoming decades by global change, but we scarcely know how they could impact on coastal planktonic communities. In this chapter we address the main terrestrial material transported via rivers and winds in Patagonian coastal waters of the South West Atlantic Ocean (SWAO) and their impact on the structure and functioning of phytoplankton communities. The rivers in Patagonia carry not only sewage from the cities that lie on their margins, but also heavy loads of nutrients, due to agricultural and cattle raising activities upstream from their mouths; extreme rainfall events increase these inputs manyfold. Eolic inputs are also important over Patagonia because this area has a strong prevalence of winds from the west, carrying a wide variety of particles that are blown far into the ocean, especially after volcanic eruptions. We used the Chubut river estuary (Patagonia) as a reference coastal ecosystem in the SWAO to assess how riverine and eolic inputs impact on phytoplankton which are the base of one of the most productive fisheries areas of the SWAO. Overall, nutrient inputs of terrestrial origin, improved phytoplankton growth, photosynthesis performance and changed the community structure towards a dominance of mostly nanoplanktonic diatom species . These responses, however, might vary due to the interaction of terrestrial material inputs with other global change drivers such as warming, acidification, vertical mixing or solar ultraviolet radiation.

Keywords

  • Extreme events
  • Precipitation
  • Southwest Atlantic
  • Wind

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-75602-4_7
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-75602-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 7.1
Fig. 7.2
Fig. 7.3
Fig. 7.4
Fig. 7.5
Fig. 7.6
Fig. 7.7
Fig. 7.8
Fig. 7.9

References

  • Achterberg EP, Moore CM, Henson SA, Steigenberger S, Stohl A, Eckhardt S, Avendano LC, Cassidy M, Hembury D, Klar JK (2013) Natural iron fertilization by the Eyjafjallajökull volcanic eruption. Geophys Res Lett 40:921–926

    CAS  CrossRef  Google Scholar 

  • Baker AR, Jickells TD, Witt M, Linge KL (2006) Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean. Mar Chem 98:43–58

    CAS  CrossRef  Google Scholar 

  • Barletta M, Lima ARA, Costa MF (2019) Distribution, sources and consequences of nutrients, persistent organic pollutants, metals and microplastics in South American estuaries. Sci Total Environ 651:1199–1218

    CAS  CrossRef  Google Scholar 

  • Bermejo P, Durán-Romero C, Villafañe VE, Helbling EW (2020) Influence of fluctuating irradiance on photosynthesis, growth and community structure of estuarine phytoplankton under increased nutrients and acidification. J Exp Mar Biol Ecol 526 (151348). https://doi.org/10.1016/j.jembe.2020.151348

  • Bermejo P, Helbling EW, Durán-Romero C, Cabrerizo MJ, Villafañe VE (2018) Abiotic control of phytoplankton blooms in temperate coastal marine ecosystems: a case study in the South Atlantic Ocean. Sci Total Environ 612:894–902

    CAS  CrossRef  Google Scholar 

  • Bilmes A, Pessacg N, Alvarez MP, Brandizi L, Cuitiño JI, Kaminker S, Bouza PJ, Rostagno CM, Núñez de la Rosa D, Canizzaro A (2016) Inundaciones en Puerto Madryn: Relevamiento y diagnóstico del evento del 21 de Enero de 2016. Informe Técnico CCT CONICET-CENPAT:1–20

    Google Scholar 

  • Brahney J, Mahowald N, Ward DS, Ballantyne AP, Neff JC (2015) Is atmospheric phosphorus pollution altering global alpine lake stoichiometry? Global Biogeochem Cy 29:1369–1383

    CAS  CrossRef  Google Scholar 

  • Browning TJ, Al-Hashem AA, Hopwood MJ, Engel A, Wakefield ED, Achterberg EP (2020) Nutrient regulation of late spring phytoplankton blooms in the midlatitude North Atlantic. Limnol Oceanogr 65:1136–1148

    CAS  CrossRef  Google Scholar 

  • Browning TJ, Bouman HA, Henderson GM, Mather TA, Pyle DM, Schlosser C, Woodward EMS, Moore CM (2014) Strong responses of Southern Ocean phytoplankton communities to volcanic ash. Geophys Res Lett 41:2851–2857

    CAS  CrossRef  Google Scholar 

  • Cabrerizo MJ, Carrillo P, Villafañe VE, Helbling EW (2017) Differential impacts of global change variables on coastal South Atlantic phytoplankton: Role of seasonal variations. Mar Environ Res 125:63–72

    CAS  CrossRef  Google Scholar 

  • Cabrerizo MJ, Carrillo P, Villafañe VE, Medina-Sánchez JM, Helbling EW (2018) Increased nutrients from aeolian-dust and riverine origin decrease the CO2-sink capacity of coastal South Atlantic waters under UVR exposure. Limnol Oceanogr 63:1191–1203

    CAS  CrossRef  Google Scholar 

  • Cabrerizo MJ, Medina-Sánchez JM, González-Olalla JM, Villar-Argaiz M, Carrillo P (2016) Saharan dust and high UVR jointly alter the metabolic balance in marine oligotrophic ecosystems. Sci Rep 6:35892. https://doi.org/10.1038/srep35892

    CAS  CrossRef  Google Scholar 

  • Cassar N, Bender ML, Barnett BA, Fan S, Moxim WJ, Levy H II, Tilbrook B (2007) The Southern Ocean biological response to aeolian iron deposition. Science 317:1067–1070

    CAS  CrossRef  Google Scholar 

  • Castañeda M, González M (2008) Statistical analysis of the precipitation trends in the Patagonia region in southern South America. Atmósfera 21:303–317

    Google Scholar 

  • Chien C-T, Mackey KRM, Dutkiewicz S, Mahowald N, Prospero JM, Paytan A (2016) Effects of African dust deposition on phytoplankton in the western tropical Atlantic Ocean off Barbados. Global Biogeochem Cy 30:716–734

    CAS  CrossRef  Google Scholar 

  • Cloern JE (2001) Our evolving conceptual model of the coastal eutrophication problem. Mar Ecol Prog Ser 210:223–253

    CAS  CrossRef  Google Scholar 

  • Cloern JE, Foster SQ, Fleckner AE (2014) Phytoplankton primary production in the world’s estuarine-coastal ecosystems. Biogeosciences 11:2477–2501

    CrossRef  Google Scholar 

  • Commendatore M, Esteves JL (2004) Natural and anthropogenic hydrocarbons in sediments from the Chubut River (Patagonia, Argentina). Mar Pollut Bull 48:910–918

    CAS  CrossRef  Google Scholar 

  • Coronato F, Pessacg N, Alvarez M (2017) The climate of Península Valdés within a regional frame. In: Bouza PJ, Bilmes A (eds) Late Cenozoic of Península Valdés. Springer, Patagonia, Argentina, pp 85–104

    CrossRef  Google Scholar 

  • Cotovicz LC Jr, Knoppers BA, Brandini N, Poirier D, Costa Santos SJ, Cordeiro RC, Abril G (2017) Predominance of phytoplankton-derived dissolved and particulate organic carbon in a highly eutrophic tropical coastal embayment (Guanabara Bay, Rio de Janeiro, Brazil). Biogeochemistry 137:1–14

    CrossRef  CAS  Google Scholar 

  • Cravero MF, Domínguez E, Murray HH (1991) Valores δO18 y δD en caolinitas, indicadores de un clima templado moderado durante el Jurásico Superior-Cretácico Inferior de la Patagonia, Argentina. Rev Asoc Geol Argentina 46:20–25

    Google Scholar 

  • Crespi-Abril AC, Soria G, De Cian A, López-Moreno C (2018) Roaring forties: An analysis of a decadal series of data of dust in Northern Patagonia. Atmos Environ 177:111–119

    CAS  CrossRef  Google Scholar 

  • Depetris PJ, Gaiero DM, Probst JL, Hartmann J, Kempe S (2005) Biogeochemical output and typology of rivers draining Patagonia’s Atlantic seaboard. J Coast Res 21:835–844

    CrossRef  Google Scholar 

  • Domínguez E, Iglesias C, Dondi M, Brendel M (2013) Arcillas y caolines de Chubut y Santa Cruz. Geología, propiedades cerámicas, recursos y perspectivas. X Congreso de Geología Económica

    Google Scholar 

  • Duran-Romero C, Villafañe VE, Valiñas MS, Gonçalves RJ, Helbling EW (2017) Solar UVR sensitivity of phyto- and bacterioplankton communities from Patagonian coastal waters under increased nutrients and acidification. ICES J Mar Sci 74:1062–1073

    CrossRef  Google Scholar 

  • Espinosa MA, Vélez-Agudelo C, Isla FI (2020) Diatom responses to natural and anthropogenic environmental changes in a Patagonian river, Argentina. J South Am Earth Sci 102. https://doi.org/10.1016/j.jsames.2020.102677

  • FAO (2015) Estudio del potencial de ampliación del riego en Argentina, 136 p

    Google Scholar 

  • Fong CR, Gaynus CJ, Carpenter RC (2020) Extreme rainfall events pulse substantial nutrients and sediments from terrestrial to nearshore coastal communities: a case study from French Polynesia. Sci Rep 10:1–8. https://doi.org/10.1038/s41598-020-59807-5

    CAS  CrossRef  Google Scholar 

  • Franco BC, Defeo O, Piola AR, Barreiro M, Yang H, Ortega L, Gianelli I, Castello JP, Vera C, Buratti C, Pájaro M, Pezzi LP, Möller OO (2020) Climate change impacts on the atmospheric circulation, ocean, and fisheries in the southwest South Atlantic Ocean: a review. Clim Change. https://doi.org/10.1007/s10584-020-02783-6

    CrossRef  Google Scholar 

  • Gaiero D, Probst J, Depetris P, Lelyter L, Kempe S (2002) Riverine transfer of heavy metals from Patagonia to the southwestern Atlantic Ocean. Reg Environ Change 3:51–64

    CrossRef  Google Scholar 

  • Gaiero DM, Probst JL, Depetris PJ, Bidart SM, Leleyter L (2003) Iron and other transition metals in Patagonian riverborne and windborne materials: Geochemical control and transport to the southern South Atlantic Ocean. Geochim Cosmochim Acta 67:3603–3623

    CAS  CrossRef  Google Scholar 

  • Garcia MD, Bonel N (2014) Environmental modulation of the plankton community composition and size-structure along the eutrophic intertidal coast of the Río de la Plata estuary, Argentina. J Limnol 73:562–573

    CrossRef  Google Scholar 

  • Garreaud R, Lopez P, Minvielle M, Rojas M (2013) Large scale control on the Patagonia climate. J Clim 26:215–230

    CrossRef  Google Scholar 

  • Gassó S, Stein AF (2007) Does dust from Patagonia reach the sub-Antarctic Atlantic Ocean? Geophys Res Lett 34:1–5

    CrossRef  Google Scholar 

  • Gassó S, Torres O (2019) Temporal characterization of dust activity in the Central Patagonia desert (years 1964–2017). J Geophys Res Atm 124:3417–3434

    CrossRef  CAS  Google Scholar 

  • Gil MN, Giarratano E, Barros V, Bortolus A, Codignotto JO, Schenke RD, Góngora ME, Lovrich G, Monti AJ, Pascual M, Rivas AL, Tagliorette A (2019) Southern Argentina: the Patagonian continental shelf. In: Sheppard C (ed) World seas: environmental evaluation, vol 1. Academic Press, pp 783–811

    Google Scholar 

  • Ginoux P, Prospero JM, Gill TE, Hsu NC, Zhao M (2012) Global‐scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev Geophys 50:RG3005. https://doi.org/10.1029/2012rg000388

  • González R, Caille G, Narvarte M (2007) An assessment of the sustainability of the hake Merluccius hubbsi fishery at San Matías gulf, Patagonia, Argentina. Fish Res 87:58–67

    CrossRef  Google Scholar 

  • González Zevallos DR, Góngora ME, Durán Romero C (2020) Abordaje socioambiental con énfasis en los residuos sólidos generados por la flota pesquera de Rawson, Patagonia Argentina. Interciencia 45:142–149

    Google Scholar 

  • Granéli W, Lindell M, Tranvik L (1996) Photo-oxidative production of dissolved inorganic carbon in lakes of different humic content. Limnol Oceanogr 41:698–706

    CrossRef  Google Scholar 

  • Guieu C, Al Azhar M, Aumont O, Mahowald N, Levy M, Ethé C, Lachkar Z (2019) Major impact of dust deposition on the productivity of the Arabian Sea. Geophys Res Lett 46:6736–6744

    CrossRef  Google Scholar 

  • Gusha MNC, Dalu T, Wasserman RJ, McQuaid CD (2019) Zooplankton grazing pressure is insufficient for primary producer control under elevated warming and nutrient levels. Sci Total Environ 651:410–418

    CAS  CrossRef  Google Scholar 

  • Heileman S (2009) XVI-55 Patagonian Shelf: LME #14. In: The UNEP large marine ecosystem report: a perspective on changing conditions. UNEP Regional Seas Report and Studies. Nairobi, Kenya, 11 p

    Google Scholar 

  • Helbling EW, Banaszak AT, Villafañe VE (2015) Differential responses of two phytoplankton communities from the Chubut river estuary (Patagonia, Argentina) to the combination of UVR and elevated temperature. Estuar Coast 38:1134–1146

    CAS  CrossRef  Google Scholar 

  • Helbling EW, Barbieri ES, Marcoval MA, Gonçalves RJ, Villafañe VE (2005) Impact of solar ultraviolet radiation on marine phytoplankton of Patagonia, Argentina. Photochem Photobiol 81:807–818

    CAS  CrossRef  Google Scholar 

  • Hitchcock JN, Mitrovic SM, Kobayashi T, Westhorpe DP (2010) Responses of estuarine bacterioplankton, phytoplankton and zooplankton to dissolved organic carbon (DOC) and inorganic nutrient additions. Estuar Coast 33:78–91

    CAS  CrossRef  Google Scholar 

  • Hoffmann LJ, Breitbarth E, Ardelan MV, Duggen S, Olgun N, Hassellöv M, Wängberg S-Å (2012) Influence of trace metal release from volcanic ash on growth of Thalassiosira pseudonana and Emiliania huxleyi. Mar Chem 132:28–33

    CrossRef  CAS  Google Scholar 

  • Hoppe CJM, Holtz L-M, Trimborn S, Rost B (2015) Ocean acidification decrease the light-use efficiency in an Antarctic diatom under dynamic but not constant light. New Phytol 207:159–171

    CAS  CrossRef  Google Scholar 

  • IPCC (2013) Climate Change 2013. The physical science basis. Cambridge University Press, New York, USA, p 1535

    Google Scholar 

  • Isla F, Espinosa M, Rubio B, Escandell A, Gerpe M, Miglioranza K, Rey D, Vilas F (2015) Avulsion at a drift-dominated mesotidal estuary: the Chubut River outlet, Patagonia, Argentina. J Hydrol 529:632–639

    CAS  CrossRef  Google Scholar 

  • Jickells TD, Moore CM (2015) The importance of atmospheric deposition for ocean productivity. Annu Rev Ecol Evol S 46:481–501

    CrossRef  Google Scholar 

  • Jobbágy EG, Paruelo JM, León RJC (1995) Estimación del régimen de precipitación a partir de la distancia a la cordillera en el noroeste de la Patagonia. Ecol Austral 5:47–53

    Google Scholar 

  • Johnson MS, Meskhidze N, Kiliyanpilakkil VP, Gassó S (2011) Understanding the transport of Patagonian dust and its influence on marine biological activity in the South Atlantic Ocean. Atmos Chem Phys 11:2487–2502

    CAS  CrossRef  Google Scholar 

  • Jordi A, Basterretxea G, Tovar-Sánchez A, Alastuey A, Querol X (2012) Copper aerosols inhibit phytoplankton growth in the Mediterranean Sea. Proc Natl Acad Sci 109:21246–21249

    CAS  CrossRef  Google Scholar 

  • Kaless G, Pascual MA, Flaherty S, Liberoff AL, Garcia Asorey MI, Brandizi LD, Pessacg NL (2019) Ecos de la tormenta de Comodoro Rivadavia en el Valle Inferior del Río Chubut. Aporte de sedimentos al Río Chubut desde la cuenca del Río Chico. In: Paredes J (ed) Comodoro Rivadavia y la catástrofe de 2017. Universidad Nacional de la Patagonia San Juan Bosco, pp 290–303

    Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge, p 509

    CrossRef  Google Scholar 

  • Klug JL (2002) Positive and negative effects of allochthonous dissolved organic matter and inorganic nutrients on phytoplankton growth. Can J Fish Aquat Sci 59:85–95

    CrossRef  Google Scholar 

  • Labraga JC, Villalba R (2009) Climate in the Monte Desert: past trends, present conditions, and future projections. J Arid Environ 73:154–163

    CrossRef  Google Scholar 

  • Lekunberri I, Leport T, Romero E, Vázquez-Domínguez E, Romera-Castillo C, Marrasé C, Peters F, Weinbauer M, Gasol JM (2010) Effects of a dust deposition event on coastal marine microbial abundance and activity, bacterial community structure and ecosystem function. J Plankton Res 32:381–396

    CAS  CrossRef  Google Scholar 

  • Li F, Ginoux P, Ramaswamy V (2010) Transport of Patagonian dust to Antarctica. J Geophys Res 115 (D18). https://doi.org/10.1029/2009jd012356

  • Longhurst A, Sathyendranath S, Platt T, Caverhill C (1995) An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res 17:1245–1271

    CrossRef  Google Scholar 

  • Mahowald N, Jickells TD, Baker AR, Artaxo P, Benitez-Nelson CR, Bergametti G, Bond TC, Chen Y, Cohen DD, Herut B, Kubilay N, Losno R, Luo C, Maenhaut W, McGee KA, Okin GS, Siefert RL, Tsukuda S (2008) Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Global Biochem Cy 22. https://doi.org/10.1029/2008GB003240

  • Malits A, Cattaneo R, Sintes E, Gasol JM, Herndl GJ, Weinbauer MG (2015) Potential impacts of black carbon on the marine microbial community. Aquat Microb Ecol 75:27–42

    CrossRef  Google Scholar 

  • Marañón E, Fernández A, Mouriño-Carballido B, Martínez-García S, Teira E, Cermeño P, Chouciño P, Huete-Ortega M, Fernández E, Calvo-Díaz A, Morán XAG, Bode A, Moreno-Ostos E, Varela MM, Patey MD, Achterbergf EP (2010) Degree of oligotrophy controls the response of microbial plankton to Saharan dust. Limnol Oceanogr 55:2339–2352

    CrossRef  Google Scholar 

  • Martinetto P, Alemany D, Botto F, Mastrángelo M, Falabella V, Acha EM, Antón G, Bianchi A, Campagna C, Cañete G, Filippo P, Iribarne O, Laterra P, Martínez P, Negri R, Piola AR, Romero SI, Santos D, Saraceno M (2020) Linking the scientific knowledge on marine frontal systems with ecosystem services. Ambio 49:541–556

    CAS  CrossRef  Google Scholar 

  • Martinetto P, Daleo P, Escapa M, Alberti J, Isacch JP, Fanjul E, Botto F, Piriz ML, Ponce G, Casas G, Iribarne O (2010) High abundance and diversity of consumers associated with eutrophic areas in a semi-desert macrotidal coastal ecosystem in Patagonia, Argentina. Est Coast Shelf Sci 88:357–364

    CAS  CrossRef  Google Scholar 

  • Martínez-García S, Teira E, Fernández E (2012) Changes in the metabolic balance of contrasting microbial food webs after nutrient enrichment. Mar Ecol Prog Ser 462:9–19

    CrossRef  CAS  Google Scholar 

  • Mazzonia E, Vazquez M (2009) Desertification in Patagonia. Develop Earth Surf Proc 13:351–377

    CrossRef  Google Scholar 

  • Mélançon J, Levasseur M, Lizotte M, Delmelle P, Cullen J, Hamme RC, Peña A, Simpson KG, Scarratt M, Tremblay J-E, Zhou J, Johnson K, Sutherland N, Arychuk M, Nemcek N, Robert M (2014) Early response of the northeast subarctic Pacific plankton assemblage to volcanic ash fertilization. Limnol Oceanogr 59:55–67

    CrossRef  CAS  Google Scholar 

  • Meng X, Chen Y, Wang B, Ma QW, Wang FJ (2016) Responses of phytoplankton community to the input of different aerosols in the East China Sea. Geophys Res Lett 43:7081–7088

    CrossRef  Google Scholar 

  • Millan R, Rignot E, Rivera A, Martineau V, Mouginot J, Zamora R, Uribe J, Lenzano G, De Fleurian B, Li X, Gim Y, Kirchner D (2019) Ice thickness and bed elevation of the Northern and Southern Patagonian icefields. Geophys Res Lett 46:6626–6635

    CrossRef  Google Scholar 

  • Montes A, Rodríguez SS, Domínguez CE (2017) Geomorphology context and characterization of dunefields developed by the southern westerlies at drying Colhué Huapi shallow lake, Patagonia Argentina. Aeol Res 28:58–70

    CrossRef  Google Scholar 

  • Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L, Boyd PW, Galbraith ED, Geider RJ, Guieu C, Jaccard SL, Jickells TD, La Roche J, Lenton TM, Mahowald NM, Marañón E, Marinov I, Moore JK, Nakatsuka T, Oschlies A, Saito MA, Thingstad TF, Tsuda A, Ulloa O (2013) Processes and patterns of oceanic nutrient limitation. Nature Geosci 6:701–710

    CAS  CrossRef  Google Scholar 

  • Morris DP, Zagarese HE, Williamson CE, Balseiro EG, Hargreaves BR, Modenutti BE, Moeller R, Quemaliños CP (1995) The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol Oceanogr 40:1381–1391

    CAS  CrossRef  Google Scholar 

  • Muhs DR, Prospero JM, Baddock MC, Gill TE (2014) Identifying sources of aeolian mineral dust: Present and past. In: Mineral dust: a key player in the Earth system. Springer, pp 51–74

    Google Scholar 

  • Orselli IBM, Kerr R, Ito RG, Tavano VM, Mendes CRB, Garcia CAE (2018) How fast is the Patagonian shelf-break acidifying? J Mar Syst 178:1–14

    CrossRef  Google Scholar 

  • Osburn CL, Morris DP (2003) Photochemistry of chromophoric dissolved organic matter in natural waters. In: Helbling EW, Zagarese H (eds) UV effects in aquatic organisms and ecosystems. Comprehensive Series in Photochesmitry & Photobiology, vol 1. The Royal Society of Chemistry, Cambridge, pp 185–217

    Google Scholar 

  • Pabortsava K, Lampitt RS, Benson J, Crowe C, McLachlan R, Le Moigne FAC, Moore CM, Pebody C, Provost P, Rees AP, Tilstone GH, Woodward EMS (2017) Carbon sequestration in the deep Atlantic enhanced by Saharan dust. Nat Geosci 10:189–194

    CAS  CrossRef  Google Scholar 

  • Paparazzo FE, Crespi-Abril AC, Gonçalves RJ, Barbieri ES, Gracia Villalobos LL, Solís ME, Soria G (2018) Patagonian dust as a source of macronutrients in the Southwest Atlantic Ocean. Oceanography 31:33–39

    CrossRef  Google Scholar 

  • Pasquini AI, Depetris PJ (2007) Discharge trends and flow dynamics of South American rivers draining the southern Atlantic seaboard: an overview. J Hydrol 333:385–399

    CrossRef  Google Scholar 

  • Paytan A, Mackey KRM, Chen Y, Lima ID, Doney SC, Mahowald N, Labiosa R, Post AF (2009) Toxicity of atmospheric aerosols on marine phytoplankton. Proc Natl Acad Sci 106:4601–4605

    CAS  CrossRef  Google Scholar 

  • Pessacg NL, Flaherty S, Solman SA, Pascual MA (2020) Climate change in northern Patagonia: critical decrease in water resources. Theor Appl Climatol 140:807–822

    CrossRef  Google Scholar 

  • Piccolo MC, Perillo GME (1999) Estuaries of Argentina: A review. In: Perillo GME, Piccolo MC, Pino Quivira M (eds) Estuaries of South America: their geomorphology and dynamics. Environmental science series. Springer, Berlin, pp 101–132

    CrossRef  Google Scholar 

  • Piola AR, Palma ED, Bianchi AA, Castro BM, Dottori M, Guerrero RA, Marrari M, Matano RP, Möller Jr OO, Saraceno M (2018) Physical oceanography of the SW Atlantic Shelf: a review. In: Hoffmeyer MS, Sabatini ME, Brandini FP, Calliari DL, Santinelli NH (eds) Plankton ecology of the Southwestern Ocean—from the subtropical to the subantarctic realm. Springer, pp 37–56

    Google Scholar 

  • Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS-7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40:2-1–2-31

    Google Scholar 

  • Rabalais NN, Turner RE, Díaz RJ, Justic D (2009) Global change and eutrophication of coastal waters. ICES J Mar Sci 66:1528–1537

    CrossRef  Google Scholar 

  • Rahav E, Belkin N, Paytan A, Herut B (2018) Phytoplankton and bacterial response to desert dust deposition in the coastal waters of the Southeastern Mediterranean Sea: a four-year in situ survey. Atmosphere 9:305. https://doi.org/10.3390/atmos9080305

    CAS  CrossRef  Google Scholar 

  • Scapini MC, Conzonno VH, Balzaretti VT, Fernández Cirelli A (2010) Comparison of marine and river water humic substances in a Patagonian environment (Argentina). Aquat Sci 72:1–12

    CAS  CrossRef  Google Scholar 

  • Stockwell JD, Doubek JP, Adrian R, Anneville O, Carey CC, Carvalho L, De Senerpont Domis LN, Dur G, Frassi MA, Grossart H-P, Ibelings BW, Lajeunesse MJ, Lewandowska AM, Llames ME, Matsuzaki S-I, Nodine ER, Nöges P, Patil VP, Pomati F, Rinke K, Rudstam LG, Rusak JA, Salmaso N, Seltmann CT, Straile D, Thackeray SJ, Thiery W, Urrutia-Cordero P, Venail P, Verburg P, Woolway RI, Zohary T, Andersen MR, Bhattacharya R, Hejzlar J, Janatian N, Kpodonu ATNK, Williamson TJ, Wilson HL (2020) Storm impacts on phytoplankton community dynamics in lakes. Global Change Biol 26:2756–2784

    CrossRef  Google Scholar 

  • Teixeira IG, Arbones B, Froján M, Nieto-Cid M, Álvarez-Salgado XA, Castro CG, Fernández E, Sobrino C, Teira E, Figueiras FG (2018) Response of phytoplankton to enhanced atmospheric and riverine nutrient inputs in a coastal upwelling embayment. Estuar Coast Shelf Sci 210:132–141

    CAS  CrossRef  Google Scholar 

  • Thornton DCO (2014) Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. Eur J Phycol 49:20–46

    CAS  CrossRef  Google Scholar 

  • Traving SJ, Rowe O, Jakobsen NM, Sørensen H, Dinasquet J, Stedmon CA, Andersson A, Riemann L (2017) The effect of increased loads of dissolved organic matter on estuarine microbial community composition and function. Front Microbiol 8. https://doi.org/10.3389/fmicb.2017.00351

  • Tsagaraki TM, Herut B, Rahav E, Berman Frank IR, Tsiola A, Tsapakis M, Giannakourou A, Gogou A, Panagiotopoulos C, Violaki K (2017) Atmospheric deposition effects on plankton communities in the Eastern Mediterranean: a mesocosm experimental approach. Front Mar Sci 4. https://doi.org/10.3389/fmars.2017.00210

  • Valiela I, Camilli L, Stone T, Giblin A, Crusius J, Fox S, Barth-Jensen C, Monteiro RO, Tucker J, Martinetto P (2012) Increased rainfall remarkably freshens estuarine and coastal waters on the Pacific coast of Panama: magnitude and likely effects on upwelling and nutrient supply. Global Planet Change 92:130–137

    CrossRef  Google Scholar 

  • Villafañe VE, Cabrerizo MJ, Erzinger GS, Bermejo P, Strauch SM, Valiñas MS, Helbling EW (2017) Photosynthesis and growth of temperate and sub-tropical estuarine phytoplankton in a scenario of nutrient enrichment under solar ultraviolet radiation exposure. Estuar Coasts 40:842–855

    CrossRef  CAS  Google Scholar 

  • Villafañe VE, Paczkowska J, Andersson A, Durán Romero C, Valiñas MS, Helbling EW (2018) Dual role of DOM in a scenario of global change on photosynthesis and structure of coastal phytoplankton from the South Atlantic Ocean. Sci Total Environ 634:1352–1361

    CrossRef  CAS  Google Scholar 

  • Villafañe VE, Valiñas MS, Cabrerizo MJ, Helbling EW (2015) Physio-ecological responses of Patagonian coastal marine phytoplankton in a scenario of global change: role of acidification, nutrients and solar UVR. Mar Chem 177:411–420

    CrossRef  CAS  Google Scholar 

  • Villar-Argaiz M, Cabrerizo MJ, González-Olalla JM, Valiñas MS, Rajic S, Carrillo P (2018) Growth impacts of Saharan dust, mineral nutrients, and CO2 on a planktonic herbivore in southern Mediterranean lakes. Sci Total Environ 639:118–128

    CAS  CrossRef  Google Scholar 

  • Vizzo JI, Cabrerizo MJ, Helbling EW, Villafañe VE (2021) Extreme and gradual rainfall condition growth, taxonomy and photosynthesis of temperate estuarine phytoplankton communities (Patagonia, Argentina). Mar Environ Res. 163:1052535. https://doi.org/10.1016/j.marenvres.2020.105235

  • Weinbauer MG, Guinot B, Migon C, Malfatti F, Mari X (2017) Skyfall—neglected roles of volcano ash and black carbon rich aerosols for microbial plankton in the ocean. J Plankton Res 39:187–198

    CAS  CrossRef  Google Scholar 

  • Westrich JR, Ebling AM, Landing WM, Joyner JL, Kemp KM, Griffin DW, Lipp EK (2016) Saharan dust nutrients promote Vibrio bloom formation in marine surface waters. Proc Natl Acad Sci 113:5964–5969

    CAS  CrossRef  Google Scholar 

  • Willey JD, Kieber RJ, Eyman MS, Avery GB Jr (2000) Rainwater dissolved organic carbon: concentrations and global flux. Global Biogeochem Cycles 14:139–148

    CAS  CrossRef  Google Scholar 

  • Yang Y, Russell LM, Lou S, Liao H, Guo J, Liu Y, Singh B, Ghan SJ (2017) Dust-wind interactions can intensify aerosol pollution over eastern China. Nat Comm 8. https://doi.org/10.1038/ncomms15333

  • Zhang C, He J, Yao X, Mu Y, Guo X, Ding X, Yu Y, Shi J, Gao H (2020) Dynamics of phytoplankton and nutrient uptake following dust additions in the northwest Pacific. Sci Total Environ 739. https://doi.org/10.1016/j.scitotenv.2020.139999

Download references

Acknowledgements

This work was supported by Agencia Nacional de Promoción Científica y Tecnológica - ANPCyT (PICT 2015-0462) and Fundación Playa Unión. MJC was supported by Juan de la Cierva Formación (FJCI2017-32318) and Incorporación (IJC2019-040850-I) contracts from Ministerio de Ciencia, Innovación y Universidades. We thank the Cooperativa Eléctrica y de Servicios de Rawson for providing building’s infrastructure to carry out this work. This work is in partial fulfillment of the Ph.D. thesis of JIV. This is Contribution N° 186 of Estación de Fotobiología Playa Unión.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Walter Helbling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Vizzo, J.I., Cabrerizo, M.J., Villafañe, V.E., Helbling, E.W. (2021). Input of Terrestrial Material into Coastal Patagonian Waters and Its Effects on Phytoplankton Communities from the Chubut River Estuary (Argentina). In: Häder, DP., Helbling, E.W., Villafañe, V.E. (eds) Anthropogenic Pollution of Aquatic Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-75602-4_7

Download citation