Skip to main content

A Second-Order Adaptive Cognitive and Affective Utility Based Computational Model for Decision Making

  • 154 Accesses

Part of the Studies in Computational Intelligence book series (SCI,volume 990)

Abstract

This paper presents a second-order adaptive decision making model based on expected utility. It focuses on a cognitive and affective valuing process. The model uses the main recent advances in cognitive and affective neuroscience, picoeconomics and expectancy theory. It responds to two main challenges that are hindering the study of decision making: (a) lack of formal dynamic computational models, and (b) discipline-bound theories. Simulations of the model cover prediction, adaptive time-sensitive and affective valence, and the adaptivity of expectancy through learning cycles.

Keywords

  • Adaptive
  • Second-order
  • Cognitive
  • Affective
  • Utility
  • Decision making

S. Raaijmakers and I. V. Ramón—Contributed equally to the research and the paper.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-75583-6_5
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-75583-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Ainslie, G.: Picoeconomics: The Strategic Interaction of Successive Motivational States Within the erson. Cambridge University Press, New York (1992)

    Google Scholar 

  2. Akerlof, G.: Procrastination and obedience. Am. Econ. Rev. 81, 1–19 (1991)

    Google Scholar 

  3. Austin, J., Vancouver, J.: Goal constructs in psychology: Structure, process, and content. Psychol. Bull. 120(3), 338–375 (1996). https://doi.org/10.1037//0033-2909.120.3.338

    CrossRef  Google Scholar 

  4. Cooksey, R.: Pursuing an integrated decision science: does ‘naturalistic decision making’ help or hinder? J. Behav. Dec. Making 14(5), 361–362 (2001)

    CrossRef  Google Scholar 

  5. Dalal, R.S., Hulin, C.L.: Motivation for what? a multivariate dynamic perspective of the criterion. In: Kanfer, R., Chen, G., Pritchard, R.D. (eds.) Work Motivation: Past, Present, and Future, pp. 63–101. Routledge, New York, NY (2008)

    Google Scholar 

  6. Damasio, A.: Descartes’ Error: Emotion, Reason and the Human Brain. Papermac, London (1994)

    Google Scholar 

  7. Damasio, A.: The Feeling of What Happens: Body and Emotion in the Making of Consciousness. Harcourt Brace, New York (1999)

    Google Scholar 

  8. Damasio, A.: Self Comes to Mind. Pantheon Books, New York (2010)

    Google Scholar 

  9. Dennett, D.C.: Freedom Evolves. Penguin Putman Inc. (2003)

    Google Scholar 

  10. Eich, E., Kihlstrom, J., Bower, G., Forgas, J., Niedenthal, P.: Cognition and Emotion. Oxford University Press, New York (2000)

    Google Scholar 

  11. Frijda, N., Manstead, A., Bem, S.: The influence of emotions on beliefs. In: Frijda, N. (ed.) Emotions and Beliefs: How Feelings Influence Thoughts, pp. 1–9. Cambridge University Press, Cambridge (2000)

    CrossRef  Google Scholar 

  12. Frijda, N.: The place of appraisal in emotion. Cogn. Emot. 7(3–4), 357–387 (1993)

    CrossRef  Google Scholar 

  13. Gerstner, W., Kistler, W.: Mathematical formulations of Hebbian learning. Biol. Cybern. 87(5–6), 404–415 (2002)

    CrossRef  Google Scholar 

  14. Ghashghaei, H., Hilgetag, C., Barbas, H.: Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. NeuroImage 34(3), 905–923 (2007)

    CrossRef  Google Scholar 

  15. Green, L., Myerson, J., McFadden, E.: Rate of temporal discounting decreases with amount of reward. Mem. Cogn. 25(5), 715–723 (1997)

    CrossRef  Google Scholar 

  16. Hebb, D.O.: The Organisation of Behavior, 1st edn. Wiley, New York (1949)

    Google Scholar 

  17. Janak, P., Tye, K.: From circuits to behaviour in the amygdala. Nature 517(7534), 284–292 (2015)

    CrossRef  Google Scholar 

  18. Likhtik, E., Paz, R.: Amygdala–prefrontal interactions in (mal)adaptive learning. Trends Neurosci. 38(3), 158–166 (2015)

    CrossRef  Google Scholar 

  19. Locke, E., Latham, G.: What should we do about motivation theory? six recommendations for the twenty-first century. Acad. Manage. Rev. 29(3), 388–403 (2004)

    CrossRef  Google Scholar 

  20. Loewenstein, G., Lerner, J.: The role of emotion in decision making. In: Davidson, R., Goldsmith, H., Scherer, K. (eds.) The Handbook of Affective Science, pp. 619–642. Oxford University Press, Oxford (2003)

    Google Scholar 

  21. Morrison, S., Salzman, C.: Re-valuing the amygdaa. Current Opinions in Neurobiology 20, 221–230 (2010)

    CrossRef  Google Scholar 

  22. Murray, E.: The amygdala, reward and emotion. Trends Cogn. Sci. 11, 489–497 (2007)

    CrossRef  Google Scholar 

  23. Pessoa, L.: On the relationship between emotion and cognition. Nat. Revised Neurosci. 9, 148–158 (2008)

    CrossRef  Google Scholar 

  24. Petry, N.: Pathological gamblers, with and without substance abuse disorders, discount delayed rewards at high rates. J. Abnorm. Psychol. 110(3), 482–487 (2001)

    CrossRef  Google Scholar 

  25. Phelps, E.: Emotion and cognition: insights from studies of the human Amygdala. Annu. Rev. Psychol. 57(1), 27–53 (2006)

    CrossRef  Google Scholar 

  26. Richards, J., Zhang, L., Mitchell, S., de Wit, H.: Delay or probability discounting in a model of impulsive behavior: Effect of alcohol. J. Exp. Anal. Behav. 71(2), 121–143 (1999)

    CrossRef  Google Scholar 

  27. Salzman, C., Fusi, S.: Emotion, cognition, and mental state representation in Amygdala and prefrontal cortex. Annu. Rev. Neurosci. 33(1), 173–202 (2010)

    CrossRef  Google Scholar 

  28. Sun, S., Vancouver, J., Weinhardt, J.: Goal choices and planning: distinct expectancy and value effects in two goal processes. Organ. Behav. Hum. Decis. Process. 125(2), 220–233 (2014)

    CrossRef  Google Scholar 

  29. Treur, J.: Intertemporal decision making: a mental load perspective. In: Pirrone, R., et al. (eds.) Proceedings of the Third International Conference on Biologically Inspired Cognitive Arachitectures, BICA’13. Advances in Intelligent Systems and Computing, vol. 196, pp. 319–331. Springer (2013)

    Google Scholar 

  30. Treur, J.: Network-Oriented Modeling: Addressing Complexity of Cognitive, Affective and Social Interactions. Springer, Cham, Switzerland (2016)

    CrossRef  Google Scholar 

  31. Treur, J.: Network-Oriented Modeling for Adaptive Networks: Designing Higher-Order Adaptive Biological, Mental and Social Network Models. Springer, Cham, Switzerland AG (2020)

    Google Scholar 

  32. Vancouver, J.: Integrating self-regulation theories of work motivation into a dynamic process theory. Hum. Res. Manage. Rev. 18(1), 1–18 (2008)

    Google Scholar 

  33. Vroom, V.: Work and Motivation. Wiley, Oxford (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Treur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Raaijmakers, S., Ramón, I.V., Treur, J. (2021). A Second-Order Adaptive Cognitive and Affective Utility Based Computational Model for Decision Making. In: Bucciarelli, E., Chen, SH., Corchado, J.M., Parra D., J. (eds) Decision Economics: Minds, Machines, and their Society. DECON 2020. Studies in Computational Intelligence, vol 990. Springer, Cham. https://doi.org/10.1007/978-3-030-75583-6_5

Download citation