Skip to main content

Modelling the Integration of Costs and Benefits During Decision Making

  • 167 Accesses

Part of the Studies in Computational Intelligence book series (SCI,volume 990)

Abstract

In this paper a computational cognitive model for decision making based on cost-benefit comparison is presented. The brain weighs costs against benefits by combining reward and loss signals into a single, difference-based neural representation of net value. The presented model integrates such findings of the literature and is able to explain a person’s decision making behavior through several scenarios.

Keywords

  • Financial decision making
  • Cost
  • Benefit

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-75583-6_22
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-75583-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Bastena, U., Biele, G., Heekeren, H.R., Fiebach, C.J.: How the brain integrates costs and benefits during decision making. Proc. Natl. Acad. Sci. 107(50), 21767–21772 (2010)

    CrossRef  Google Scholar 

  2. Knutson, B., Cooper, J.C.: Functional magnetic resonance imaging of reward prediction. Curr. Opin. Neurol. 18(4), 411–417 (2005)

    CrossRef  Google Scholar 

  3. Philiastides, M.G., Biele, G., Heekeren, H.R.: A mechanistic account of value computation in the human brain. Proc. Natl. Acad. Sci. USA 107(20), 9430–9435 (2010)

    CrossRef  Google Scholar 

  4. Rangel, A., Camerer, C., Montague, P.R.: A framework for studying the neurobiology of value-based decision making. Nat. Rev. Neurosci. 9, 545–556 (2008)

    CrossRef  Google Scholar 

  5. Heekeren, H.R., Marrett, S., Ungerleider, L.G.: The neural systems that mediate human perceptual decision making. Nat. Rev. Neurosci. 9, 467–479 (2008)

    CrossRef  Google Scholar 

  6. Gold, J.I., Shadlen, M.N.: Neural computations that underlie decisions about sensory stimuli. Trends Cogn. Sci. 5(1), 10–16 (2001)

    CrossRef  Google Scholar 

  7. Smith, P.L., Ratcli, R.: Psychology and neurobiology of simple decisions. Trends Neurosci. 27(3), 161–168 (2004)

    CrossRef  Google Scholar 

  8. Mazurek, M.E., Roitman, J.D., Ditterich, J., Shadlen, M.N.: A role for neural integrators in perceptual decision making. Cereb. Cortex 13(11), 1257–1269 (2003)

    CrossRef  Google Scholar 

  9. Yacubian, J., et al.: Dissociable systems for gain- and loss-related value predictions and errors of prediction in the human brain. J. Neurosci. 26(37), 9530–9537 (2006)

    CrossRef  Google Scholar 

  10. De Martino, B., Camerer, C.F., Adolphs, R.: Amygdala damage eliminates monetary loss aversion. Proc. Natl. Acad .Sci. USA 107(8), 3788–3792 (2010)

    CrossRef  Google Scholar 

  11. Lebreton, M., Jorge, S., Michel, V., Thirion, B., Pessiglione, M.: An automatic valuation system in the human brain: evidence from functional neuroimaging. Neuron 64(3), 431–439 (2009)

    CrossRef  Google Scholar 

  12. Glascher, J., Hampton, A.N., O’Doherty, J.P.: Determining a role for ventromedial prefrontal cortex in encoding action-based value signals during reward-related decision making. Cereb. Cortex 19(2), 483–495 (2009)

    CrossRef  Google Scholar 

  13. Bechara, A., Tranel, D., Damasio, H.: Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain 123(11), 2189–2202 (2000)

    CrossRef  Google Scholar 

  14. Fellows, L.K.: Deciding how to decide: ventromedial frontal lobe damage affects information acquisition in multi-attribute decision making. Brain 129, 944–952 (2006)

    CrossRef  Google Scholar 

  15. Thilakarathne, D.J., Treur, J.: Computational cognitive modelling of action awareness: prior and retrospective. Brain Informat. 2(2), 77–106 (2015)

    CrossRef  Google Scholar 

  16. Treur, J.: Network-Oriented Modeling: Addressing Complexity of Cognitive, Affective and Social Interactions. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45213-5

    CrossRef  MATH  Google Scholar 

  17. Berridge, K.C.: Motivation concepts in behavioral neuroscience. Physiol. Behav. 81(2), 179–209 (2004)

    CrossRef  Google Scholar 

  18. Berridge, K.C., Robinson, T.E., Aldridge, J.W.: Dissecting components of reward: ‘liking’, ‘wanting’, and learning. Curr. Opin. Pharmacol. 9(1), 65–73 (2009)

    CrossRef  Google Scholar 

  19. Elliot, A.J., Gable, S.L., Mapes, R.R.: Approach and avoidance motivation in the social domain. Personal. Soc. Psychol. Bull. 32(3), 378–391 (2006)

    CrossRef  Google Scholar 

  20. Knutson, B., Greer, S.M.: Anticipatory affect: neural correlates and consequences for choice. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 363, 3771–3786 (2008)

    Google Scholar 

  21. Damasio, A.R.: Descartes’ Error: Emotion, Reason, and the Human Brain. Penguin, London (2005)

    Google Scholar 

  22. Damasio, A.R.: Self Comes to Mind: Constructing the Conscious Brain. Vintage Books, New York (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Treur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Icho, M., Thilakarathne, D.J., Treur, J. (2021). Modelling the Integration of Costs and Benefits During Decision Making. In: Bucciarelli, E., Chen, SH., Corchado, J.M., Parra D., J. (eds) Decision Economics: Minds, Machines, and their Society. DECON 2020. Studies in Computational Intelligence, vol 990. Springer, Cham. https://doi.org/10.1007/978-3-030-75583-6_22

Download citation