Skip to main content

Neuropathology of Mild Traumatic Brain Injury: Relationship to Structural Neuroimaging Findings

  • Chapter
  • First Online:
Concussions in Athletics
  • 707 Accesses

Abstract

The basics of structural neuroimaging identified neuropathological changes that may be identified on computed tomography and magnetic resonance imaging (MRI) associated with mild traumatic brain injury (mTBI), also known as concussion, are reviewed. Emphasis is placed on understanding the subtle nature of neuropathology that may accompany mTBI and its detection with neuroimaging. The role of diffusion tensor imaging is overviewed with numerous examples provided that illustrate neuroimaging techniques that detect mTBI abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fidan E, et al. Metabolic and structural imaging at 7 tesla after repetitive mild traumatic brain injury in immature rats. ASN Neuro. 2018;10:1759091418770543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schweser F, et al. Visualization of thalamic calcium influx with quantitative susceptibility mapping as a potential imaging biomarker for repeated mild traumatic brain injury. NeuroImage. 2019;200:250–8.

    Article  CAS  PubMed  Google Scholar 

  3. Victoroff J, Bigler ED. Concussion and traumatic encephalopathy. New York: Cambridge University Press; 2019.

    Book  Google Scholar 

  4. Mayer AR, et al. Radiologic common data elements rates in pediatric mild traumatic brain injury. Neurology. 2020;94(3):e241–53.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bigler ED. Systems biology, neuroimaging, neuropsychology, neuroconnectivity and traumatic brain injury. Front Syst Neurosci. 2016;10:55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Bigler ED. Structural neuroimaging in sport-related concussion. Int J Psychophysiol. 2018;132(Pt A):105–23.

    Article  PubMed  Google Scholar 

  7. Teasdale G, Knill-Jones R, van der Sande J. Observer variability in assessing impaired consciousness and coma. J Neurol Neurosurg Psychiatry. 1978;41(7):603–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bigler ED, et al. Heterogeneity of brain lesions in pediatric traumatic brain injury. Neuropsychology. 2013;27(4):438–51.

    Article  PubMed  Google Scholar 

  9. Perez-Polo JR, et al. A rodent model of mild traumatic brain blast injury. J Neurosci Res. 2015;93(4):549–61.

    Article  CAS  PubMed  Google Scholar 

  10. Hylin MJ, et al. Behavioral and histopathological alterations resulting from mild fluid percussion injury. J Neurotrauma. 2013;30(9):702–15.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hoogenboom WS, et al. Diffusion tensor imaging of the evolving response to mild traumatic brain injury in rats. J Exp Neurosci. 2019;13:1179069519858627.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Raizman R, et al. Traumatic brain injury severity in a network perspective: a diffusion MRI based connectome study. Sci Rep. 2020;10(1):9121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Arnatkeviciute A, Fulcher BD, Fornito A. Uncovering the transcriptional correlates of hub connectivity in neural networks. Front Neural Circuits. 2019;13:47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sporns O. Structure and function of complex brain networks. Dialogues Clin Neurosci. 2013;15(3):247–62.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bailey SK, et al. Applying a network framework to the neurobiology of reading and dyslexia. J Neurodev Disord. 2018;10(1):37.

    Article  PubMed  PubMed Central  Google Scholar 

  16. van den Heuvel MP, Sporns O. Rich-club organization of the human connectome. J Neurosci. 2011;31(44):15775–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Bigler ED, et al. Structural neuroimaging findings in mild traumatic brain injury. Sports Med Arthrosc Rev. 2016;24(3):e42–52.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Douglas DB, et al. Neuroimaging of traumatic brain injury. Med Sci (Basel). 2018;7(1):2.

    Google Scholar 

  19. Suri AK, Lipton ML. Neuroimaging of brain trauma in sports. Handb Clin Neurol. 2018;158:205–16.

    Article  PubMed  Google Scholar 

  20. Slobounov S, et al. Concussion in athletics: ongoing clinical and brain imaging research controversies. Brain Imaging Behav. 2012;6(2):224–43.

    Article  PubMed  Google Scholar 

  21. Griauzde J, Srinivasan A. Advanced neuroimaging techniques: basic principles and clinical applications. J Neuroophthalmol. 2018;38(1):101–14.

    Article  PubMed  Google Scholar 

  22. Wilde EA, Hunter JV, Bigler ED. A primer of neuroimaging analysis in neurorehabilitation outcome research. NeuroRehabilitation. 2012;31(3):227–42.

    Article  PubMed  Google Scholar 

  23. Post A, Hoshizaki B, Gilchrist MD. Finite element analysis of the effect of loading curve shape on brain injury predictors. J Biomech. 2012;45(4):679–83.

    Article  PubMed  Google Scholar 

  24. Statler KD, et al. Traumatic brain injury during development reduces minimal clonic seizure thresholds at maturity. Epilepsy Res. 2008;80(2–3):163–70.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Smith D, et al. Multi-excitation MR elastography of the brain: wave propagation in anisotropic white matter. J Biomech Eng. 2020;142(7):0710051.

    Article  PubMed Central  Google Scholar 

  26. Okamoto RJ, et al. Insights into traumatic brain injury from MRI of harmonic brain motion. J Exp Neurosci. 2019;13:1179069519840444.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kraft RH, et al. Combining the finite element method with structural connectome-based analysis for modeling neurotrauma: connectome neurotrauma mechanics. PLoS Comput Biol. 2012;8(8):e1002619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Watanabe R, et al. Research of the relationship of pedestrian injury to collision speed, car-type, impact location and pedestrian sizes using human FE model (THUMS version 4). Stapp Car Crash J. 2012;56:269–321.

    PubMed  Google Scholar 

  29. Prichep LS, et al. Time course of clinical and electrophysiological recovery after sport-related concussion. J Head Trauma Rehabil. 2013;28(4):266–73.

    Article  PubMed  Google Scholar 

  30. Duhaime AC, et al. Spectrum of acute clinical characteristics of diagnosed concussions in college athletes wearing instrumented helmets: clinical article. J Neurosurg. 2012;117(6):1092–9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Menon DK, et al. Position statement: definition of traumatic brain injury. Arch Phys Med Rehabil. 2010;91(11):1637–40.

    Article  PubMed  Google Scholar 

  32. Hammad A, Westacott L, Zaben M. The role of the complement system in traumatic brain injury: a review. J Neuroinflammation. 2018;15(1):24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Stahel PF, Morganti-Kossmann MC, Kossmann T. The role of the complement system in traumatic brain injury. Brain Res Brain Res Rev. 1998;27(3):243–56.

    Article  CAS  PubMed  Google Scholar 

  34. Kamins J, et al. What is the physiological time to recovery after concussion? A systematic review. Br J Sports Med. 2017;51(12):935–40.

    Article  PubMed  Google Scholar 

  35. Biasca N, Maxwell WL. Minor traumatic brain injury in sports: a review in order to prevent neurological sequelae. Prog Brain Res. 2007;161:263–91.

    Article  PubMed  Google Scholar 

  36. Magdesian MH, et al. Atomic force microscopy reveals important differences in axonal resistance to injury. Biophys J. 2012;103(3):405–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rosas-Hernandez H, et al. Characterization of uniaxial high-speed stretch as an in vitro model of mild traumatic brain injury on the blood-brain barrier. Neurosci Lett. 2018;672:123–9.

    Article  CAS  PubMed  Google Scholar 

  38. Morrison B 3rd, et al. An in vitro model of traumatic brain injury utilising two-dimensional stretch of organotypic hippocampal slice cultures. J Neurosci Methods. 2006;150(2):192–201.

    Article  PubMed  Google Scholar 

  39. Dolle JP, et al. Newfound sex differences in axonal structure underlie differential outcomes from in vitro traumatic axonal injury. Exp Neurol. 2018;300:121–34.

    Article  PubMed  Google Scholar 

  40. Churchill NW, et al. Mapping brain recovery after concussion: from acute injury to 1 year after medical clearance. Neurology. 2019;93(21):e1980–92.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Churchill NW, et al. Scale-free functional brain dynamics during recovery from sport-related concussion. Hum Brain Mapp. 2020;41(10):2567–82.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Di Battista AP, et al. The relationship between symptom burden and systemic inflammation differs between male and female athletes following concussion. BMC Immunol. 2020;21(1):11.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Churchill NW, et al. Baseline vs. cross-sectional MRI of concussion: distinct brain patterns in white matter and cerebral blood flow. Sci Rep. 2020;10(1):1643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wilde EA, et al. Serial measurement of memory and diffusion tensor imaging changes within the first week following uncomplicated mild traumatic brain injury. Brain Imaging Behav. 2012;6(2):319–28.

    Article  PubMed  Google Scholar 

  45. Creeden S, et al. Interobserver agreement for the computed tomography severity grading scales for acute traumatic brain injury. J Neurotrauma. 2020;37(12):1445–51.

    Article  PubMed  Google Scholar 

  46. Bonfante E, Riascos R, Arevalo O. Imaging of chronic concussion. Neuroimaging Clin N Am. 2018;28(1):127–35.

    Article  PubMed  Google Scholar 

  47. Bigler ED, Maxwell WL. Neuropathology of mild traumatic brain injury: relationship to neuroimaging findings. Brain Imaging Behav. 2012;6(2):108–36.

    Article  PubMed  Google Scholar 

  48. Bigler ED, Maxwell WL. Neuroimaging and neuropathology of TBI. NeuroRehabilitation. 2011;28(2):63–74.

    Article  PubMed  Google Scholar 

  49. Smith DH, Hicks R, Povlishock JT. Therapy development for diffuse axonal injury. J Neurotrauma. 2013;30(5):307–23.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hunter LE, et al. Comparing region of interest versus voxel-wise diffusion tensor imaging analytic methods in mild and moderate traumatic brain injury: a systematic review and meta-analysis. J Neurotrauma. 2019;36(8):1222–30.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Narayana S, et al. Neuroimaging and neuropsychological studies in sports-related concussions in adolescents: current state and future directions. Front Neurol. 2019;10:538.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Schneider DK, et al. Diffusion tensor imaging in athletes sustaining repetitive head impacts: a systematic review of prospective studies. J Neurotrauma. 2019;36(20):2831–49.

    Article  PubMed  Google Scholar 

  53. Viano DC, et al. Concussion in professional football: brain responses by finite element analysis: part 9. Neurosurgery. 2005;57(5):891–916; discussion 891–916.

    Article  PubMed  Google Scholar 

  54. Madri JA. Modeling the neurovascular niche: implications for recovery from CNS injury. J Physiol Pharmacol. 2009;60(Suppl 4):95–104.

    PubMed  Google Scholar 

  55. Ropper AH, Gorson KC. Clinical practice. Concussion. N Engl J Med. 2007;356(2):166–72.

    Article  CAS  PubMed  Google Scholar 

  56. Heitger MH, et al. Impaired eye movements in post-concussion syndrome indicate suboptimal brain function beyond the influence of depression, malingering or intellectual ability. Brain. 2009;132(Pt 10):2850–70.

    Article  PubMed  Google Scholar 

  57. Bigler ED. Volumetric MRI findings in mild traumatic brain injury (mTBI) and neuropsychological outcome. Neuropsychol Rev. 2021; https://doi.org/10.1007/s11065-020-09474-0.

  58. Sussman D, et al. Concussion induces focal and widespread neuromorphological changes. Neurosci Lett. 2017;650:52–9.

    Article  CAS  PubMed  Google Scholar 

  59. Zhou Y, et al. Mild traumatic brain injury: longitudinal regional brain volume changes. Radiology. 2013;267(3):880–90.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bigler ED. Neuropsychology and clinical neuroscience of persistent post-concussive syndrome. J Int Neuropsychol Soc. 2008;14(1):1–22.

    Article  PubMed  Google Scholar 

  61. Pinel JPJ. Biopsychology. Boston: Allyn & Bacon; 1990.

    Google Scholar 

  62. Deuchars J, West DC, Thomson AM. Relationships between morphology and physiology of pyramid-pyramid single axon connections in rat neocortex in vitro. J Physiol. 1994;478(3):423–35.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin D. Bigler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bigler, E.D. (2021). Neuropathology of Mild Traumatic Brain Injury: Relationship to Structural Neuroimaging Findings. In: Slobounov, S.M., Sebastianelli, W.J. (eds) Concussions in Athletics. Springer, Cham. https://doi.org/10.1007/978-3-030-75564-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75564-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75563-8

  • Online ISBN: 978-3-030-75564-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics