Skip to main content

Towards Off-the-grid Algorithms for Total Variation Regularized Inverse Problems

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12679))

Abstract

We introduce an algorithm to solve linear inverse problems regularized with the total (gradient) variation in a gridless manner. Contrary to most existing methods, that produce an approximate solution which is piecewise constant on a fixed mesh, our approach exploits the structure of the solutions and consists in iteratively constructing a linear combination of indicator functions of simple polygons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A repository containing a complete implementation of Algorithm 1 can be found online at https://github.com/rpetit/tvsfw.

  2. 2.

    Details on the first variations of perimeter and area can be found in [12, Sect. 17.3].

  3. 3.

    This only occurs when \(\lambda \) is small enough. For higher values of \(\lambda \), the output is similar to (d) or (e).

  4. 4.

    Assumption 1 is for example satisfied by \(\varphi :x\mapsto \text {exp}\left( -||x||^2/(2\sigma ^2)\right) \) for any \(\sigma >0\).

References

  1. Alter, F., Caselles, V., Chambolle, A.: Evolution of characteristic functions of convex sets in the plane by the minimizing total variation flow. Interfaces Free Boundaries 7(1), 29–53 (2005). https://doi.org/10.4171/IFB/112

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Caselles, V., Masnou, S., Morel, J.M.: Connected components of sets of finite perimeter and applications to image processing. J. Eur. Math. Soc. 3(1), 39–92 (2001). https://doi.org/10.1007/PL00011302

    Article  MathSciNet  MATH  Google Scholar 

  3. Boyd, N., Schiebinger, G., Recht, B.: The alternating descent conditional gradient method for sparse inverse problems. SIAM J. Optim. 27(2), 616–639 (2017). https://doi.org/10.1137/15M1035793

    Article  MathSciNet  MATH  Google Scholar 

  4. Boyer, C., Chambolle, A., De Castro, Y., Duval, V., de Gournay, F., Weiss, P.: On representer theorems and convex regularization. SIAM J. Optim. 29(2), 1260–1281 (2019). https://doi.org/10.1137/18M1200750

    Article  MathSciNet  MATH  Google Scholar 

  5. Bredies, K., Carioni, M.: Sparsity of solutions for variational inverse problems with finite-dimensional data. Calc. Var. Partial. Differ. Equ. 59(1), 1–26 (2019). https://doi.org/10.1007/s00526-019-1658-1

    Article  MathSciNet  MATH  Google Scholar 

  6. Bredies, K., Pikkarainen, H.K.: Inverse problems in spaces of measures. ESAIM Control Optim. Calc. Var. 19(1), 190–218 (2013). https://doi.org/10.1051/cocv/2011205

    Article  MathSciNet  MATH  Google Scholar 

  7. Candès, E.J., Fernandez-Granda, C.: Towards a mathematical theory of super-resolution. Commun. Pure Appl. Math. 67(6), 906–956 (2014). https://doi.org/10.1002/cpa.21455

    Article  MathSciNet  MATH  Google Scholar 

  8. Carlier, G., Comte, M., Peyré, G.: Approximation of maximal Cheeger sets by projection. ESAIM Math. Model. Numer. Anal. 43(1), 139–150 (2009). https://doi.org/10.1051/m2an/2008040

    Article  MathSciNet  MATH  Google Scholar 

  9. Denoyelle, Q., Duval, V., Peyre, G., Soubies, E.: The sliding Frank-Wolfe algorithm and its application to super-resolution microscopy. Inverse Prob. (2019). https://doi.org/10.1088/1361-6420/ab2a29

    Article  MATH  Google Scholar 

  10. Fleming, W.H.: Functions with generalized gradient and generalized surfaces. Annali di Matematica 44(1), 93–103 (1978). https://doi.org/10.1007/BF02415193

    Article  MathSciNet  MATH  Google Scholar 

  11. Jaggi, M.: Revisiting Frank-Wolfe: projection-free sparse convex optimization. In: International Conference on Machine Learning, pp. 427–435. PMLR, February 2013

    Google Scholar 

  12. Maggi, F.: Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory. Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge (2012). https://doi.org/10.1017/CBO9781139108133

  13. Parini, E.: An introduction to the Cheeger problem. Surv. Math. Appl. 6, 9–21 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Pólya, G., Szegö, G.: Isoperimetric Inequalities in Mathematical Physics. No. 27 in Annals of Mathematics Studies, Princeton University Press (1951)

    Google Scholar 

  15. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1), 259–268 (1992). https://doi.org/10.1016/0167-2789(92)90242-F

    Article  MathSciNet  MATH  Google Scholar 

  16. Tabti, S., Rabin, J., Elmoata, A.: Symmetric upwind scheme for discrete weighted total variation. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1827–1831, April 2018. https://doi.org/10.1109/ICASSP.2018.8461736

  17. Viola, F., Fitzgibbon, A., Cipolla, R.: A unifying resolution-independent formulation for early vision. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 494–501, June 2012. https://doi.org/10.1109/CVPR.2012.6247713

Download references

Acknowledgments

This work was supported by a grant from Région Ile-De-France and by the ANR CIPRESSI project, grant ANR-19-CE48-0017-01 of the French Agence Nationale de la Recherche. RP warmly thanks the owners of Villa Margely for their hospitality during the writing of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Petit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Castro, Y., Duval, V., Petit, R. (2021). Towards Off-the-grid Algorithms for Total Variation Regularized Inverse Problems. In: Elmoataz, A., Fadili, J., Quéau, Y., Rabin, J., Simon, L. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2021. Lecture Notes in Computer Science(), vol 12679. Springer, Cham. https://doi.org/10.1007/978-3-030-75549-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75549-2_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75548-5

  • Online ISBN: 978-3-030-75549-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics