Abstract
Approaches based on order-adaptive regularisation belong to the most accurate variational methods for computing the optical flow. By locally deciding between first- and second-order regularisation, they are applicable to scenes with both fronto-parallel and ego-motion. So far, however, existing order-adaptive methods have a decisive drawback. While the involved first- and second-order smoothness terms already make use of anisotropic concepts, the underlying selection process itself is still isotropic in that sense that it locally chooses the same regularisation order for all directions. In our paper, we address this shortcoming. We propose a generalised order-adaptive approach that allows to select the local regularisation order for each direction individually. To this end, we split the order-adaptive regularisation across and along the locally dominant direction and perform an energy competition for each direction separately. This in turn offers another advantage. Since the parameters can be chosen differently for both directions, the approach allows for a better adaption to the underlying scene. Experiments for MPI Sintel and KITTI 2015 demonstrate the usefulness of our approach. They not only show improvements compared to an isotropic selection scheme. They also make explicit that our approach is able to improve the results from state-of-the-art learning-based approaches, if applied as a final refinement step – thereby achieving top results in both benchmarks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Black, M.J., Anandan, P.: The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Comput. Vis. Image Underst. 63(1), 75–104 (1996)
Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imag. Sci. 3(3), 492–526 (2010)
Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24673-2_3
Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_44
Demetz, O., Stoll, M., Volz, S., Weickert, J., Bruhn, A.: Learning brightness transfer functions for the joint recovery of illumination changes and optical flow. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 455–471. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_30
Dosovitskiy, A., et al.: Flownet: learning optical flow with convolutional networks. In: Proceedings of International Conference on Computer Vision (ICCV), pp. 2758–2766 (2015)
Hafner, D., Schroers, C., Weickert, J.: Introducing maximal anisotropy into second order coupling models. In: Gall, J., Gehler, P., Leibe, B. (eds.) GCPR 2015. LNCS, vol. 9358, pp. 79–90. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24947-6_7
Horn, B., Schunck, B.G.: Determining optical flow. AI 17, 185–203 (1981)
Knöbelreiter, P., Pock, T.: Learned collaborative stereo refinement. In: Fink, G.A., Frintrop, S., Jiang, X. (eds.) DAGM GCPR 2019. LNCS, vol. 11824, pp. 3–17. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33676-9_1
Maurer, D., Bruhn, A.: ProFlow: learning to predict optical flow. In: Proceedings of British Machine Vision Conference (BMVC). BMVA Press (2018)
Maurer, D., Marniok, N., Goldluecke, B., Bruhn, A.: Structure-from-motion-aware PatchMatch for adaptive optical flow estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 575–592. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_35
Maurer, D., Stoll, M., Bruhn, A.: Order-adaptive regularisation for variational optical flow: global, local and in between. In: Lauze, F., Dong, Y., Dahl, A.B. (eds.) SSVM 2017. LNCS, vol. 10302, pp. 550–562. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58771-4_44
Maurer, D., Stoll, M., Bruhn, A.: Order-adaptive and illumination-aware variational optical flow refinement. In: Proceedings of British Machine Vision Conference (BMVC), pp. 150.1–150.13 (2017)
Maurer, D., Stoll, M., Volz, S., Gairing, P., Bruhn, A.: A comparison of isotropic and anisotropic second order regularisers for optical flow. In: Lauze, F., Dong, Y., Dahl, A.B. (eds.) SSVM 2017. LNCS, vol. 10302, pp. 537–549. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58771-4_43
Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3061–3070 (2015)
Nagel, H., Enkelmann, W.: An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 8(5), 565–593 (1986)
Ranftl, R., Bredies, K., Pock, T.: Non-local total generalized variation for optical flow estimation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 439–454. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_29
Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C.: Epicflow: edge-preserving interpolation of correspondences for optical flow. In: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1164–1172 (2015)
Stoll, M., Volz, S., Maurer, D., Bruhn, A.: A time-efficient optimisation framework for parameters of optical flow methods. In: Sharma, P., Bianchi, F.M. (eds.) SCIA 2017. LNCS, vol. 10269, pp. 41–53. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59126-1_4
Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 402–419. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_24
Wannenwetsch, A.S., Roth, S.: Probabilistic pixel-adaptive refinement networks. In: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11642–11651 (2020)
Zimmer, H., Bruhn, A., Weickert, J.: Optic flow in harmony. Int. J. Comput. Vision 93(3), 368–388 (2011)
Acknowledgements
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 251654672 – TRR 161 (B04, B07).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Mehl, L., Beschle, C., Barth, A., Bruhn, A. (2021). An Anisotropic Selection Scheme for Variational Optical Flow Methods with Order-Adaptive Regularisation. In: Elmoataz, A., Fadili, J., Quéau, Y., Rabin, J., Simon, L. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2021. Lecture Notes in Computer Science(), vol 12679. Springer, Cham. https://doi.org/10.1007/978-3-030-75549-2_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-75549-2_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-75548-5
Online ISBN: 978-3-030-75549-2
eBook Packages: Computer ScienceComputer Science (R0)