Skip to main content

An Anisotropic Selection Scheme for Variational Optical Flow Methods with Order-Adaptive Regularisation

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12679))

Abstract

Approaches based on order-adaptive regularisation belong to the most accurate variational methods for computing the optical flow. By locally deciding between first- and second-order regularisation, they are applicable to scenes with both fronto-parallel and ego-motion. So far, however, existing order-adaptive methods have a decisive drawback. While the involved first- and second-order smoothness terms already make use of anisotropic concepts, the underlying selection process itself is still isotropic in that sense that it locally chooses the same regularisation order for all directions. In our paper, we address this shortcoming. We propose a generalised order-adaptive approach that allows to select the local regularisation order for each direction individually. To this end, we split the order-adaptive regularisation across and along the locally dominant direction and perform an energy competition for each direction separately. This in turn offers another advantage. Since the parameters can be chosen differently for both directions, the approach allows for a better adaption to the underlying scene. Experiments for MPI Sintel and KITTI 2015 demonstrate the usefulness of our approach. They not only show improvements compared to an isotropic selection scheme. They also make explicit that our approach is able to improve the results from state-of-the-art learning-based approaches, if applied as a final refinement step – thereby achieving top results in both benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Black, M.J., Anandan, P.: The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Comput. Vis. Image Underst. 63(1), 75–104 (1996)

    Article  Google Scholar 

  2. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imag. Sci. 3(3), 492–526 (2010)

    Article  MathSciNet  Google Scholar 

  3. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24673-2_3

    Chapter  Google Scholar 

  4. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_44

    Chapter  Google Scholar 

  5. Demetz, O., Stoll, M., Volz, S., Weickert, J., Bruhn, A.: Learning brightness transfer functions for the joint recovery of illumination changes and optical flow. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 455–471. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_30

    Chapter  Google Scholar 

  6. Dosovitskiy, A., et al.: Flownet: learning optical flow with convolutional networks. In: Proceedings of International Conference on Computer Vision (ICCV), pp. 2758–2766 (2015)

    Google Scholar 

  7. Hafner, D., Schroers, C., Weickert, J.: Introducing maximal anisotropy into second order coupling models. In: Gall, J., Gehler, P., Leibe, B. (eds.) GCPR 2015. LNCS, vol. 9358, pp. 79–90. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24947-6_7

    Chapter  Google Scholar 

  8. Horn, B., Schunck, B.G.: Determining optical flow. AI 17, 185–203 (1981)

    Google Scholar 

  9. Knöbelreiter, P., Pock, T.: Learned collaborative stereo refinement. In: Fink, G.A., Frintrop, S., Jiang, X. (eds.) DAGM GCPR 2019. LNCS, vol. 11824, pp. 3–17. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33676-9_1

    Chapter  Google Scholar 

  10. Maurer, D., Bruhn, A.: ProFlow: learning to predict optical flow. In: Proceedings of British Machine Vision Conference (BMVC). BMVA Press (2018)

    Google Scholar 

  11. Maurer, D., Marniok, N., Goldluecke, B., Bruhn, A.: Structure-from-motion-aware PatchMatch for adaptive optical flow estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 575–592. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_35

    Chapter  Google Scholar 

  12. Maurer, D., Stoll, M., Bruhn, A.: Order-adaptive regularisation for variational optical flow: global, local and in between. In: Lauze, F., Dong, Y., Dahl, A.B. (eds.) SSVM 2017. LNCS, vol. 10302, pp. 550–562. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58771-4_44

    Chapter  Google Scholar 

  13. Maurer, D., Stoll, M., Bruhn, A.: Order-adaptive and illumination-aware variational optical flow refinement. In: Proceedings of British Machine Vision Conference (BMVC), pp. 150.1–150.13 (2017)

    Google Scholar 

  14. Maurer, D., Stoll, M., Volz, S., Gairing, P., Bruhn, A.: A comparison of isotropic and anisotropic second order regularisers for optical flow. In: Lauze, F., Dong, Y., Dahl, A.B. (eds.) SSVM 2017. LNCS, vol. 10302, pp. 537–549. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58771-4_43

    Chapter  Google Scholar 

  15. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3061–3070 (2015)

    Google Scholar 

  16. Nagel, H., Enkelmann, W.: An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 8(5), 565–593 (1986)

    Article  Google Scholar 

  17. Ranftl, R., Bredies, K., Pock, T.: Non-local total generalized variation for optical flow estimation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 439–454. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_29

    Chapter  Google Scholar 

  18. Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C.: Epicflow: edge-preserving interpolation of correspondences for optical flow. In: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1164–1172 (2015)

    Google Scholar 

  19. Stoll, M., Volz, S., Maurer, D., Bruhn, A.: A time-efficient optimisation framework for parameters of optical flow methods. In: Sharma, P., Bianchi, F.M. (eds.) SCIA 2017. LNCS, vol. 10269, pp. 41–53. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59126-1_4

    Chapter  Google Scholar 

  20. Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 402–419. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_24

    Chapter  Google Scholar 

  21. Wannenwetsch, A.S., Roth, S.: Probabilistic pixel-adaptive refinement networks. In: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11642–11651 (2020)

    Google Scholar 

  22. Zimmer, H., Bruhn, A., Weickert, J.: Optic flow in harmony. Int. J. Comput. Vision 93(3), 368–388 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 251654672 – TRR 161 (B04, B07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Mehl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mehl, L., Beschle, C., Barth, A., Bruhn, A. (2021). An Anisotropic Selection Scheme for Variational Optical Flow Methods with Order-Adaptive Regularisation. In: Elmoataz, A., Fadili, J., Quéau, Y., Rabin, J., Simon, L. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2021. Lecture Notes in Computer Science(), vol 12679. Springer, Cham. https://doi.org/10.1007/978-3-030-75549-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75549-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75548-5

  • Online ISBN: 978-3-030-75549-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics