Skip to main content

On the Hardness of Module-LWE with Binary Secret

Part of the Lecture Notes in Computer Science book series (LNSC,volume 12704)

Abstract

We prove that the Module Learning With Errors (\(\mathrm {M\text {-}LWE}\)) problem with binary secrets and rank d is at least as hard as the standard version of \(\mathrm {M\text {-}LWE}\) with uniform secret and rank k, where the rank increases from k to \(d \ge (k+1)\log _2 q + \omega (\log _2 n)\), and the Gaussian noise from \(\alpha \) to \(\beta = \alpha \cdot \varTheta (n^2\sqrt{d})\), where n is the ring degree and q the modulus. Our work improves on the recent work by Boudgoust et al. in 2020 by a factor of \(\sqrt{md}\) in the Gaussian noise, where m is the number of given \(\mathrm {M\text {-}LWE}\) samples, when q fulfills some number-theoretic requirements. We use a different approach than Boudgoust et al. to achieve this hardness result by adapting the previous work from Brakerski et al. in 2013 for the Learning With Errors problem to the module setting. The proof applies to cyclotomic fields, but most results hold for a larger class of number fields, and may be of independent interest.

Keywords

  • Lattice-based cryptography
  • Module learning with errors
  • Binary secret

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-75539-3_21
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-75539-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 1.

References

  1. Alperin-Sheriff, J., Apon, D.: Dimension-preserving reductions from LWE to LWR. IACR Cryptology ePrint Archive 2016:589 (2016)

    Google Scholar 

  2. Albrecht, M.R., Deo, A.: Large modulus ring-LWE \(\ge \) module-LWE. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 267–296. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_10

    CrossRef  Google Scholar 

  3. Brakerski, Z., Döttling, N.: Hardness of LWE on general entropic distributions. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 551–575. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_19

    CrossRef  Google Scholar 

  4. Bos, J.W., et al.: CRYSTALS - kyber: a CCA-secure module-lattice-based KEM. In: 2018 IEEE European Symposium on Security and Privacy, EuroS&P 2018, London, United Kingdom, 24–26 April 2018, pp. 353–367 (2018)

    Google Scholar 

  5. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Innovations in Theoretical Computer Science 2012, Cambridge, MA, USA, 8–10 January 2012, pp. 309–325 (2012)

    Google Scholar 

  6. Boudgoust, K., Jeudy, C., Roux-Langlois, A., Wen, W.: Towards classical hardness of module-LWE: the linear rank case. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 289–317. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_10

    CrossRef  Google Scholar 

  7. Boudgoust, K., Jeudy, C., Roux-Langlois, A., Wen, W.: On the hardness of module-lwe with binary secrets. IACR Cryptology ePrint Archive 2021:265 (2021)

    Google Scholar 

  8. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: Symposium on Theory of Computing Conference, STOC 2013, Palo Alto, CA, USA, 1–4 June 2013, pp. 575–584 (2013)

    Google Scholar 

  9. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. SIAM J. Comput. 43(2), 831–871 (2014)

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. Ducas, L., et al.: Crystals-dilithium: a lattice-based digital signature scheme. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(1), 238–268 (2018)

    CrossRef  MathSciNet  Google Scholar 

  11. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_24

    CrossRef  MATH  Google Scholar 

  12. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the learning with errors assumption. In: Proceedings of the Innovations in Computer Science - ICS 2010, Tsinghua University, Beijing, China, 5–7 January 2010, pp. 230–240. Tsinghua University Press (2010)

    Google Scholar 

  13. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, 17–20 May 2008, pp. 197–206. ACM (2008)

    Google Scholar 

  14. Kirchner, P., Fouque, P.-A.: An improved BKW algorithm for LWE with applications to cryptography and lattices. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 43–62. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_3

    CrossRef  Google Scholar 

  15. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

    CrossRef  Google Scholar 

  16. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. J. ACM 60(6), 43:1–43:35 (2013)

    CrossRef  MathSciNet  MATH  Google Scholar 

  17. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices. Des. Codes Crypt. 75(3), 565–599 (2014). https://doi.org/10.1007/s10623-014-9938-4

    CrossRef  MathSciNet  MATH  Google Scholar 

  18. Lyubashevsky, V., Seiler, G.: Short, invertible elements in partially splitting cyclotomic rings and applications to lattice-based zero-knowledge proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 204–224. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_8

    CrossRef  MATH  Google Scholar 

  19. Lin, H., Wang, Y., Wang, M.: Hardness of module-LWE and ring-LWE on general entropic distributions. IACR Cryptology ePrint Archive 2020:1238 (2020)

    Google Scholar 

  20. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way functions. Comput. Complex. 16(4), 365–411 (2007)

    CrossRef  MathSciNet  MATH  Google Scholar 

  21. Micciancio, D.: On the hardness of learning with errors with binary secrets. Theory Comput. 14(1), 1–17 (2018)

    CrossRef  MathSciNet  MATH  Google Scholar 

  22. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    CrossRef  Google Scholar 

  23. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)

    CrossRef  MathSciNet  MATH  Google Scholar 

  24. NIST. Post-quantum cryptography standardization. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization

  25. Peikert, C.: Limits on the hardness of lattice problems in l\({}_{\text{ p }}\) norms. Comput. Complex. 17(2), 300–351 (2008)

    CrossRef  MathSciNet  Google Scholar 

  26. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, 31 May–2 June 2009, pp. 333–342 (2009)

    Google Scholar 

  27. Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_5

    CrossRef  Google Scholar 

  28. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learning with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_4

    CrossRef  Google Scholar 

  29. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, 22–24 May 2005, pp. 84–93 (2005)

    Google Scholar 

  30. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6), 34:1–34:40 (2009)

    CrossRef  MathSciNet  MATH  Google Scholar 

  31. Rosca, M., Stehlé, D., Wallet, A.: On the ring-LWE and polynomial-LWE problems. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 146–173. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_6

    CrossRef  Google Scholar 

  32. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_36

    CrossRef  Google Scholar 

  33. Wang, Y., Wang, M.: Module-LWE versus ring-LWE, revisited. IACR Cryptology ePrint Archive 2019:930 (2019)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the European Union PROMETHEUS project (Horizon 2020 Research and Innovation Program, grant 780701). It has also received a French government support managed by the National Research Agency in the “Investing for the Future” program, under the national project RISQ P141580-2660001/DOS0044216. Katharina Boudgoust is funded by the Direction Générale de l’Armement (Pôle de Recherche CYBER). We thank our anonymous referees of Indocrypt 2020 and CT-RSA 2021 for their thorough proof reading and constructive feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Boudgoust .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Boudgoust, K., Jeudy, C., Roux-Langlois, A., Wen, W. (2021). On the Hardness of Module-LWE with Binary Secret. In: Paterson, K.G. (eds) Topics in Cryptology – CT-RSA 2021. CT-RSA 2021. Lecture Notes in Computer Science(), vol 12704. Springer, Cham. https://doi.org/10.1007/978-3-030-75539-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75539-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75538-6

  • Online ISBN: 978-3-030-75539-3

  • eBook Packages: Computer ScienceComputer Science (R0)