Abstract
We prove that the Module Learning With Errors (\(\mathrm {M\text {-}LWE}\)) problem with binary secrets and rank d is at least as hard as the standard version of \(\mathrm {M\text {-}LWE}\) with uniform secret and rank k, where the rank increases from k to \(d \ge (k+1)\log _2 q + \omega (\log _2 n)\), and the Gaussian noise from \(\alpha \) to \(\beta = \alpha \cdot \varTheta (n^2\sqrt{d})\), where n is the ring degree and q the modulus. Our work improves on the recent work by Boudgoust et al. in 2020 by a factor of \(\sqrt{md}\) in the Gaussian noise, where m is the number of given \(\mathrm {M\text {-}LWE}\) samples, when q fulfills some number-theoretic requirements. We use a different approach than Boudgoust et al. to achieve this hardness result by adapting the previous work from Brakerski et al. in 2013 for the Learning With Errors problem to the module setting. The proof applies to cyclotomic fields, but most results hold for a larger class of number fields, and may be of independent interest.
Keywords
- Lattice-based cryptography
- Module learning with errors
- Binary secret
This is a preview of subscription content, access via your institution.
Buying options

References
Alperin-Sheriff, J., Apon, D.: Dimension-preserving reductions from LWE to LWR. IACR Cryptology ePrint Archive 2016:589 (2016)
Albrecht, M.R., Deo, A.: Large modulus ring-LWE \(\ge \) module-LWE. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 267–296. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_10
Brakerski, Z., Döttling, N.: Hardness of LWE on general entropic distributions. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 551–575. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_19
Bos, J.W., et al.: CRYSTALS - kyber: a CCA-secure module-lattice-based KEM. In: 2018 IEEE European Symposium on Security and Privacy, EuroS&P 2018, London, United Kingdom, 24–26 April 2018, pp. 353–367 (2018)
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Innovations in Theoretical Computer Science 2012, Cambridge, MA, USA, 8–10 January 2012, pp. 309–325 (2012)
Boudgoust, K., Jeudy, C., Roux-Langlois, A., Wen, W.: Towards classical hardness of module-LWE: the linear rank case. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 289–317. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_10
Boudgoust, K., Jeudy, C., Roux-Langlois, A., Wen, W.: On the hardness of module-lwe with binary secrets. IACR Cryptology ePrint Archive 2021:265 (2021)
Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: Symposium on Theory of Computing Conference, STOC 2013, Palo Alto, CA, USA, 1–4 June 2013, pp. 575–584 (2013)
Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. SIAM J. Comput. 43(2), 831–871 (2014)
Ducas, L., et al.: Crystals-dilithium: a lattice-based digital signature scheme. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(1), 238–268 (2018)
Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_24
Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the learning with errors assumption. In: Proceedings of the Innovations in Computer Science - ICS 2010, Tsinghua University, Beijing, China, 5–7 January 2010, pp. 230–240. Tsinghua University Press (2010)
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, 17–20 May 2008, pp. 197–206. ACM (2008)
Kirchner, P., Fouque, P.-A.: An improved BKW algorithm for LWE with applications to cryptography and lattices. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 43–62. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_3
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. J. ACM 60(6), 43:1–43:35 (2013)
Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices. Des. Codes Crypt. 75(3), 565–599 (2014). https://doi.org/10.1007/s10623-014-9938-4
Lyubashevsky, V., Seiler, G.: Short, invertible elements in partially splitting cyclotomic rings and applications to lattice-based zero-knowledge proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 204–224. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_8
Lin, H., Wang, Y., Wang, M.: Hardness of module-LWE and ring-LWE on general entropic distributions. IACR Cryptology ePrint Archive 2020:1238 (2020)
Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way functions. Comput. Complex. 16(4), 365–411 (2007)
Micciancio, D.: On the hardness of learning with errors with binary secrets. Theory Comput. 14(1), 1–17 (2018)
Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41
Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)
NIST. Post-quantum cryptography standardization. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
Peikert, C.: Limits on the hardness of lattice problems in l\({}_{\text{ p }}\) norms. Comput. Complex. 17(2), 300–351 (2008)
Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, 31 May–2 June 2009, pp. 333–342 (2009)
Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_5
Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learning with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_4
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, 22–24 May 2005, pp. 84–93 (2005)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6), 34:1–34:40 (2009)
Rosca, M., Stehlé, D., Wallet, A.: On the ring-LWE and polynomial-LWE problems. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 146–173. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_6
Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_36
Wang, Y., Wang, M.: Module-LWE versus ring-LWE, revisited. IACR Cryptology ePrint Archive 2019:930 (2019)
Acknowledgments
This work was supported by the European Union PROMETHEUS project (Horizon 2020 Research and Innovation Program, grant 780701). It has also received a French government support managed by the National Research Agency in the “Investing for the Future” program, under the national project RISQ P141580-2660001/DOS0044216. Katharina Boudgoust is funded by the Direction Générale de l’Armement (Pôle de Recherche CYBER). We thank our anonymous referees of Indocrypt 2020 and CT-RSA 2021 for their thorough proof reading and constructive feedback.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Boudgoust, K., Jeudy, C., Roux-Langlois, A., Wen, W. (2021). On the Hardness of Module-LWE with Binary Secret. In: Paterson, K.G. (eds) Topics in Cryptology – CT-RSA 2021. CT-RSA 2021. Lecture Notes in Computer Science(), vol 12704. Springer, Cham. https://doi.org/10.1007/978-3-030-75539-3_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-75539-3_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-75538-6
Online ISBN: 978-3-030-75539-3
eBook Packages: Computer ScienceComputer Science (R0)