Skip to main content

Exosomes

  • Chapter
  • First Online:
Regenerative Medicine

Abstract

Regenerative medicine has gained momentum from broad acceptance that biologics sourced from either self (autologous) or from donor tissue (allogeneic) are capable of initiating tissue restoration that is integrated at the organ level and functional at the cell level. Emerging first in the context of stem cells with broad differentiation potential, continued research has identified paracrine factors that work in the metrics of nano-dimension. Invisible without microscopy or biochemical detection, in some instances, these derivatives of cell metabolism known as micro-vesicles or exosomes have become synonymous with the next therapeutic consideration toward clinical care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carson R, Darling L, Darling L. Silent Spring. Boston: Houghton Mifflin; 1962.

    Google Scholar 

  2. Grand View Research, Stem Cell Market Size Analysis Report By Product (Adult, hESC, Induced Pluripotent), By Application (Regenerative Medicine, Drug Discovery & Development), By Technology, By Therapy, And Segment Forecasts, 2019–2025, April 2019.

    Google Scholar 

  3. Shroff G. A review on stem cell therapy for multiple sclerosis: special focus on human embryonic stem cells. Stem Cells Cloning. 2018;11:1–11.

    PubMed  PubMed Central  Google Scholar 

  4. Multiple sclerosis by the numbers: facts, statistics, and you. Accessed 20 Sept 2017. Available from: http://www.healthline.com/health/multiple-sclerosis/facts-statistics-infographic.

  5. Grady D, Abelson R. Stem cell treatments flourish with little evidence that they work. NYTimes. 13 May 2019.

    Google Scholar 

  6. Nitske RW. The Life of W. C. Röntgen, Discoverer of the X-Ray. Tucson: University of Arizona Press; 1971.

    Google Scholar 

  7. Dittrich L. Patient H.M.: A story of memory, madness and family secrets. New York: Random House Audio; 2016.

    Google Scholar 

  8. https://www.fda.gov/vaccines-blood-biologics/consumers-biologics/important-patient-and-consumer-information-about-regenerative-medicine-therapies

  9. Jung HH, Kim JY, Lim JE, et al. Cytokine profiling in serum-derived exosomes isolated by different methods. Sci Rep. 2020;10:14069. https://doi.org/10.1038/s41598-020-70584-z.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dad HA, Gu T-W, Zhu A-Q, Huang L-Q, Peng L-H. Plant exosome-like nanovesicles: emerging therapeutics and drug delivery nanoplatforms. Molecular Therapy. 2021;29(1):13–31, ISSN 1525–0016,. https://doi.org/10.1016/j.ymthe.2020.11.030.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Y, Bi J, Huang J, Tang Y, Du S, Li P. Exosome: a review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int J Nanomed. 2020;15:6917–34. Published 2020 Sep 22. https://doi.org/10.2147/IJN.S264498.

    Article  CAS  Google Scholar 

  12. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8:726–36.

    Article  CAS  PubMed  Google Scholar 

  13. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29:341–5.

    Article  CAS  PubMed  Google Scholar 

  14. Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, Ju S, Mu J, Zhang L, Steinman L, Miller D, Zhang HG. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther. 2011;19:1769–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lai RC, Yeo RW, Tan KH, Lim SK. Exosomes for drug delivery – a novel application for the mesenchymal stem cell. Biotechnol Adv. 2013;31:543–51.

    Article  CAS  PubMed  Google Scholar 

  16. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29:341–5.

    Article  CAS  PubMed  Google Scholar 

  17. Baglio SR, Pegtel DM, Baldini N. Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol. 2012;3:359.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, Morando L, Busca A, Falda M, Bussolati B, Tetta C, Camussi G. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol. 2009;20:1053–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ma Y, Poole K, Goyette J, Gaus K. Introducing membrane charge and membrane potential to T cell signaling. Front Immunol. 2017;8:1513. https://doi.org/10.3389/fimmu.2017.01513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lim, et al. Development of a robust pH-sensitive polyelectrolyte ionomer complex for anticancer nanocarriers. Int J Nanomedicine. 2016;11:703–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Martin PE, Evans WH. Incorporation of connexins into plasma membranes and gap junctions. Cardiovasc Res. 2004;62:378–87.

    Article  CAS  PubMed  Google Scholar 

  22. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110:673–87.

    Article  CAS  PubMed  Google Scholar 

  23. Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol. 2009;19:43–51.

    Article  CAS  PubMed  Google Scholar 

  24. Majka M, Janowska-Wieczorek A, Ratajczak J, Ehrenman K, Pietrzkowski Z, Kowalska MA, Gewirtz AM, Emerson SG, Ratajczak MZ. Numerous growth factors, cytokines, and chemokines are secreted by human CD34(_) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood. 2001;97:3075–85.

    Article  CAS  PubMed  Google Scholar 

  25. Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia. 2006;20:1487–95.

    Article  CAS  PubMed  Google Scholar 

  26. Chargaff E, West R. The biological significance of the thromboplastic protein of blood. J Biol Chem. 1946;166:189–97.

    Article  CAS  PubMed  Google Scholar 

  27. Behnke O. Electron microscopical observations on the surface coating of human blood platelets. J Ultrastruct Res. 1968;24:51–69.

    Article  CAS  PubMed  Google Scholar 

  28. De Broe ME, Wieme RJ, Logghe GN, Roels F. Spontaneous sheddingof plasma membrane fragments by human cells in vivo and in vitro. Clin Chim Acta. 1977;81:237–45.

    Article  PubMed  Google Scholar 

  29. Lee H, Zhang D, Wu J, Otterbein LE, Jin Y. Lung epithelial cell-derived microvesicles regulate macrophage migration via MicroRNA-17/221-induced integrin β1 recycling. J immunol (Baltimore, Md. : 1950). 2017;199(4):1453–64.

    Article  CAS  Google Scholar 

  30. Hu L, Wang J, Zhou X, Xiong Z, Zhao J, Yu R, et al. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci Rep. 2016;6:32993. https://doi.org/10.1038/srep32993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Butler JT, Abdelhamed S, Kurre P. Extracellular vesicles in the hematopoietic microenvironment. Haematologica 2018. 2018;103(3):382–94.

    CAS  Google Scholar 

  32. Wu R, Gao W, Yao K, Ge J. Roles of exosomes derived from immune cells in cardiovascular diseases. Front Immunol. 2019;10:648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kuzet SE, Gaggioli C. Fibroblast activation in cancer: when seed fertilizes soil. Cell Tissue Res. 2016;365:607–19.

    Article  CAS  PubMed  Google Scholar 

  34. Malda J, Boere J, van de Lest CH, van Weeren PR, Wauben MH. Extracellular vesicles - new tool for joint repair and regeneration. Nat Rev Rheumatol. 2016;12:243–9. https://doi.org/10.1038/nrrheum.2015.170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mukherjee S. The gene: an intimate history. London: Bodley Head; 2016.

    Google Scholar 

  36. Wang Y, Chen LM, Liu ML. Microvesicles and diabetic complications – novel mediators, potential biomarkers and therapeutic targets. Acta Pharmacol Sin. 2014;35(4):433–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lane N. The vital question: energy, evolution, and the origins of complex life. New York: WW Norton and CO; 2015.

    Google Scholar 

  38. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rosca A, Rayia DMA, Tutuianu R. Emerging role of stem cells - derived exosomes as valuable tools for cardiovascular therapy. Curr Stem Cell Res Ther. 2017;12:134–8.

    Article  CAS  PubMed  Google Scholar 

  40. Miyazaki Y, Nomura S, Miyake T, Kagawa H, Kitada C, Taniguchi H, Komiyama Y, Fujimura Y, Ikeda Y, Fukuhara S. High shear stress can initiate both platelet aggregation and shedding of procoagulant containing microparticles. Blood. 1996;88(9):3456–64.

    Article  CAS  PubMed  Google Scholar 

  41. Bode AP, Orton SM, Frye MJ, Udis BJ. Vesiculation of platelets during in vitro aging. Blood. 1991;77(4):887–95.

    Article  CAS  PubMed  Google Scholar 

  42. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9(5):641–50.

    Article  CAS  PubMed  Google Scholar 

  43. Bruder SP, Fink DJ, Caplan AI. Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem. 1994;56(3):283–94.

    Article  CAS  PubMed  Google Scholar 

  44. Caplan A, Correa D. The MSC: An injury drugstore. Cell Stem Cell. 2011;9(1):11–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Caplan AI. MSCs: the sentinel and safe-guards of injury. J Cell Physiol. 2016;231(7):1413–6. Epub 2015 Nov 26

    Article  CAS  PubMed  Google Scholar 

  46. Caplan AI. Mesenchymal stem cells: time to change the name! Stem Cells Transl Med. 2017;6:1445–51.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Li MO, Flavell RA. TGF-beta: A master of all T cell trades. Cell. 2008;134(3):392–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Trams EG, Lauter CJ, Salem N Jr, Heine U. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta. 1981;645(1):63–70.

    Article  CAS  PubMed  Google Scholar 

  49. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.

    Article  CAS  PubMed  Google Scholar 

  50. Ono M, Kosaka N, Tominaga N, Yoshioka Y, Takeshita F, Takahashi RU, et al. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci Signal. 2014;7:ra63. https://doi.org/10.1126/scisignal.2005231.

    Article  CAS  PubMed  Google Scholar 

  51. Lopatina T, Bruno S, Tetta C, Kalinina N, Porta M, Camussi G. Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential. Cell Commun Signal. 2014;12:26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab. 2013;33:1711–5. https://doi.org/10.1038/jcbfm.2013.152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li CC, Eaton SA, Young PE, Lee M, Shuttleworth R, Humphreys DT, Grau GE, Combes V, Bebawy M, Gong J, Brammah S, Buckland ME, Suter CM. Glioma microvesicles carry selectively packaged coding and non-coding RNAs which alter gene expression in recipient cells. RNA Biol. 2013;10:1333–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Weston WW, Ganey T, Temple HT. The relationship between exosomes and cancer: implications for diagnostics and therapeutics. BioDrugs. 2019;33(2):137–58. https://doi.org/10.1007/s40259-019-00338-5. Review

    Article  CAS  PubMed  Google Scholar 

  55. Greco V, Hannus M, Eaton S. Argosomes: a potential vehicle for the spread of morphogens through epithelia. Cell. 2011;06:633–45.

    Google Scholar 

  56. Lakkaraju A, Rodriguez-Boulan E. Itinerant exosomes: emerging roles in cell and tissue polarity. Trends Cell Biol. 2008;18:199–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bernardi S, Foroni C, Zanaglio C, et al. Feasibility of tumor-derived exosome enrichment in the onco-hematology leukemic model of chronic myeloid leukemia. Int J Mol Med. 2019;44(6):2133–44. https://doi.org/10.3892/ijmm.2019.4372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sanderson RD, Bandari SK, Vlodaysky I. Proteases and glycosidases on the surface of exosomes: newly discovered mechanisms for extracellular remodeling. Matrix Biol. 2019;75–76:160–9. https://doi.org/10.1016/j.matbio.2017.10.007.

    Article  CAS  PubMed  Google Scholar 

  59. Zlotogorski A, Vered M, Chaushu G, Dayan D. Exosomes isolated from saliva of cancer patients differ from those of healthy individuals. Oral Oncol. 2013;49:S70–1. https://doi.org/10.1016/j.oraloncology.2013.03.185.

    Article  Google Scholar 

  60. Kalluri R. LeBleu VS.:review the biology, function, and biomedical applications of exosomes. Science. 2020;7:367(6478).

    Google Scholar 

  61. Gurunathan S, Kang M-H, Jeyaraj M, Qasim M, Kim J-H. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells. 2019;8:307.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Ganey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ganey, T., Temple, H.T., Hunter, C.W. (2023). Exosomes. In: Hunter, C.W., Davis, T.T., DePalma, M.J. (eds) Regenerative Medicine . Springer, Cham. https://doi.org/10.1007/978-3-030-75517-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75517-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75516-4

  • Online ISBN: 978-3-030-75517-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics