Skip to main content

Chitosan Oligomer Mono-coated and Multi-coated Nanofibrous Polycaprolactone Toward the Characterization of Mechanical Strength for Wound Dressing Application

  • Conference paper
  • First Online:
8th International Conference on the Development of Biomedical Engineering in Vietnam (BME 2020)

Abstract

Chitosan oligomer (OCS) captured much attention for diverse applications in the biomedical and pharmaceutical fields. In this study, OCS, as an antimicrobial agent, was coated onto dressing based electrospun polycaprolactone (PCL) membrane to enhance the bio-function and physical properties of materials. The various content of the OCS coating layer in terms of concentration (2, 4, 8, 16%) or coating times (1, 3, and 6 times) was concerned in this study. A Fourier-transform infrared was used to analyze the functional structure OCS derived from chitosan. Agar diffusion test was performed to pretest the antibacterial ability of OCS coating solution with gram-positive (S. aureus) and gram-negative (P. aeruginosa). The morphology and physical strength of PCL membranes and OCS coating layer were observed by Scanning Electron Microscope (SEM) and the uniaxial tension, respectively. From the agar diffusion test, OCS with a low concentration (2%) inhibited both mentioned pathogens. SEM evaluation displayed the irregular surface by the OCS multi-coating layer, while smoother morphology by one-layer coating with high OCS concentration. In the physical test, the membrane became more inflexible as the higher OCS content in both the coating method as the different mechanical strength between PCL substrate and OCS coating film.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Broussard KC, Powers JG (2013) Wound dressings: selecting the most appropriate type. Am J Clin Dermatol 14(6):449–459

    Article  Google Scholar 

  2. Guo SA, DiPietro LA (2010) Factors affecting wound healing. J Dent Res 89(3):219–229

    Article  Google Scholar 

  3. Matica MA, Aachmann FL, Tøndervik A, Sletta H, Ostafe V (2019) Chitosan as a wound dressing starting material: antimicrobial properties and mode of action. Int J Mol Sci 20(23):5889

    Article  Google Scholar 

  4. Loan Khanh L, Thanh Truc N, Tan Dat N, Thi Phuong Nghi N, Van Toi V, Thi Thu Hoai N et al (2019) Gelatin-stabilized composites of silver nanoparticles and curcumin: characterization, antibacterial and antioxidant study. Sci Technol Adv Mater 20(1):276–290

    Google Scholar 

  5. Thanh NT, Hieu MH, Phuong NTM, Thuan TDB, Thu HNT, Do Minh T et al (2018) Optimization and characterization of electrospun polycaprolactone coated with gelatin-silver nanoparticles for wound healing application. Mater Sci Eng C 91:318–329

    Google Scholar 

  6. Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polymer J 49(4):780–792

    Article  Google Scholar 

  7. Schmitz C, González Auza L, Koberidze D, Rasche S, Fischer R, Bortesi L (2019) Conversion of chitin to defined chitosan oligomers: current status and future prospects. Mar Drugs 17(8):452

    Article  Google Scholar 

  8. Naveed M, Phil L, Sohail M, Hasnat M, Baig MMFA, Ihsan AU et al (2019) Chitosan oligosaccharide (COS): an overview. Int J Bio Macromol

    Google Scholar 

  9. Thapa B, Narain R (2016) Mechanism, current challenges, and new approaches for non-viral gene delivery. In: Polymers and nanomaterials for gene therapy. Woodhead Publishing, pp 1–27

    Google Scholar 

  10. Shokrollahi M, Bahrami SH, Nazarpak MH, Solouk A (2020) Multilayer nanofibrous patch comprising chamomile loaded carboxyethyl chitosan/poly (vinyl alcohol) and polycaprolactone as a potential wound dressing. Int J Bio Macromol

    Google Scholar 

  11. Abrigo M, McArthur SL, Kingshott P (2014) Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects. Macromol Biosci 14(6):772–792

    Article  Google Scholar 

  12. Okur ME, Karantas ID, Şenyiğit Z, Okur NÜ, Siafaka PI (2020) Recent trends on wound management; new therapeutic choices based on polymeric carriers. Asian J Pharm Sci

    Google Scholar 

  13. Ho MH, Do TBT, Dang NNT, Le ANM, Ta HTK, Vo TV, Nguyen HT (2019) Effects of an acetic acid and acetone mixture on the characteristics and scaffold-cell interaction of electrospun polycaprolactone membranes. Appl Sci 9(20):4350

    Article  Google Scholar 

  14. Xuan Du D, Xuan Vuong B (2019) Study on preparation of water-soluble chitosan with varying molecular weights and its antioxidant activity. Adv Mater Sci Eng

    Google Scholar 

  15. Zou P, Yang X, Wang J, Li Y, Yu H, Zhang Y, Liu G (2016) Advances in characterisation and biological activities of chitosan and chitosan oligosaccharides. Food Chem 190:1174–1181

    Article  Google Scholar 

  16. Kumar S, Ye F, Dobretsov S, Dutta J (2019) Chitosan nanocomposite coatings for food, paints, and water treatment applications. Appl Sci 9(12):2409

    Article  Google Scholar 

  17. Roylance D (2001) Stress-strain curves. Massachusetts Institute of Technology study, Cambridge

    Google Scholar 

  18. Brown DA, Lee EW, Loh CT, Kee ST (2009) A new wave in treatment of vascular occlusive disease: biodegradable stents—clinical experience and scientific principles. J Vasc Interv Radiol 20(3):315–324

    Article  Google Scholar 

  19. Hamrang A, Howell BA (2013) Foundations of high-performance polymers: properties, performance and applications. Apple Academic Press

    Google Scholar 

  20. Nunthanid J, Puttipipatkhachorn S, Yamamoto K, Peck GE (2001) Physical properties and molecular behavior of chitosan films. Drug Dev Ind Pharm 27(2):143–157

    Article  Google Scholar 

  21. Sarasam A, Madihally SV (2005) Characterization of chitosan–polycaprolactone blends for tissue engineering applications. Biomaterials 26(27):5500–5508

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by International University, VNU-HCM, under grant number T2019-03-BME.

Conflicts of Interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nhi Thao-Ngoc Dang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dang, N.TN., Ho, T.TP., Nguyen, L.KK., Doan, V.K., Le, A.NM., Nguyen, TH. (2022). Chitosan Oligomer Mono-coated and Multi-coated Nanofibrous Polycaprolactone Toward the Characterization of Mechanical Strength for Wound Dressing Application. In: Van Toi, V., Nguyen, TH., Long, V.B., Huong, H.T.T. (eds) 8th International Conference on the Development of Biomedical Engineering in Vietnam. BME 2020. IFMBE Proceedings, vol 85. Springer, Cham. https://doi.org/10.1007/978-3-030-75506-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75506-5_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75505-8

  • Online ISBN: 978-3-030-75506-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics