Skip to main content

Apples (Pyrus Malus)—Morphology, Taxonomy, Composition and Health Benefits

  • Chapter
  • First Online:

Abstract

Apple is economically and commercially most important temperate fruit. Jammu and Kashmir (J&K) is the highest producer of quality apples. The fruit is known for its immense health benefits due to its rich nutritional composition and phytochemistry. It is being continuously termed as “miracle fruit” because of the involvement of its several components in various biochemical reactions leading to optimal growth, development and overall wellness of humans. Apples are cholesterol free but rich in flavonols, anthocyanins, dihydrochalcones, quercetin, catechin, tannins and dietary fibre content especially pectin. Intake of apples reverse the oxidative damage caused to nerve cells and reduces incidence of diabetes. Various polyphenols and macronutrients from apples possess potent therapeutic effects such as cholesterol lowering effect, hypoglycaemic activity, chemopreventive effect, cardioprotective effect and many more. Apple, besides being a negative calorie food, helps in fighting depression, controlling obesity, averts constipation and improves dental health.

Family:

Rosaceae

Sub-family:

Maloideae (former Pomoideae)

Genus:

Malus

Species:

M. pumila

Local name:

Saeb

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amarante, C. V. T. D., Steffens, C. A., Mafra, Á. L., & Albuquerque, J. A. (2008). Yield and fruit quality of apple from conventional and organic production systems. Pesquisa agropecuária brasileira, 43(3), 333–340.

    Article  Google Scholar 

  • Aprikian, O., Levrat-Verny, M., Besson, C., Busserolles, J., Remesy, C., & Demigne, C. (2001). Apple favourably affects parameters of cholesterol metabolism and of anti-oxidative protection in cholesterol fed rats. Food Chemistry, 75, 445–452.

    Article  CAS  Google Scholar 

  • Arts, I. C., Hollman, P. C., Bueno de Mesquita, H. B., Feskens, E. J., & Kromhout, D. (2001). Dietary catechins and epithelial cancer incidence: The Zutphen elderly study. International Journal of Cancer, 92(2), 298–302.

    Article  CAS  Google Scholar 

  • Bjarnason, I., Williams, P., Smethurst, P., Peters, T. J., & Levi, A. J. (1986). Effect of non-steroidal anti-inflammatory drugs and prostaglandins on the permeability of the human small intestine. Gut, 27, 1292–1297.

    Google Scholar 

  • Boyer, J., & Liu, R. H. (2004). Apple phytochemicals and their health benefits. Nutrition Journal, 3(1), 1–15.

    Article  Google Scholar 

  • Cho, K. D., Han, C. K., & Lee, B. H. (2013). Loss of body weight and fat and improved lipid profiles in obese rats fed apple pomace or apple juice concentrate. Journal of Medicinal Food, 16(9), 823–830.

    Google Scholar 

  • Crespy, V., Aprikian, O., Morand, C., Besson, C., Manach, C., Demigne, C., & Remesy, C. (2001). Bioavailability of phloretin and phloridzin in rats. The Journal of Nutrition, 131(12), 3227–3230.

    Google Scholar 

  • Darzi, M. I. (2016). Horticulture sector towards economic development of Jammu & Kashmir. Multidisciplinary Research and Development, 3(4), 238–240.

    Google Scholar 

  • Day, A. J., Gee, J. M., DuPont, M. S., Johnson, I. T., & Williamson, G. (2003). Absorption of quercetin-3-glucoside and quercetin-4′-glucoside in the rat small intestine: The role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter. Biochemical Pharmacology, 65(7), 1199–1206.

    Article  CAS  Google Scholar 

  • de Oliviera, M., Sichieri, R., & Moura, A. (2003). Weight loss associated with a daily intake of three apples or three pears among overweight women. Nutrition, 19, 253–256.

    Article  Google Scholar 

  • Del Rio, D., Rodriguez-Mateos, A., Spencer, J. P., Tognolini, M., Borges, G., & Crozier, A. (2013). Dietary (poly) phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Anti-Oxidants Redox Signaling, 18, 1818–1892.

    Article  Google Scholar 

  • Denis, M. C., Furtos, A., Dudonné, S., Montoudis, A., Garofalo, C., Desjardins, Y., Delvin, E., & Levy, E. (2013). Apple peel polyphenols and their beneficial actions on oxidative stress and inflammation. Plos One, 8(1), e53725.

    Google Scholar 

  • Downing, D. L. (Ed.). (1989). Processed apple products. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Du Pont, M. S., Bennett, R. N., Mellon, F. A., & Williamson, G. (2002). Polyphenols from alcoholic apple cider are adsorbed, metabolized and excreted by humans. The Journal of Nutrition, 132(2), 172–175.

    Article  Google Scholar 

  • Eberhardt, M., Lee, C., & Liu, R. H. (2000). Anti-oxidant activity of apple peels. Nature, 405, 903–904.

    Article  CAS  Google Scholar 

  • Elzebroek, A. T. G., & Wind, K. (2008). Guide to cultivated plants. CAB International (pp. 27).

    Google Scholar 

  • Escarpa, A., & Gonzalez, M. C. (1998). High-performance liquid chromatography with diode-array detection for the determination of phenolic compounds in peel and pulp from different apple varieties. Journal of Chromatography A, 823(1–2), 331–337.

    Article  CAS  Google Scholar 

  • FAO. (2011). Production database.

    Google Scholar 

  • FAO. (2017). http://www.fao.org/faostat/en/#data/QC.

  • Gebhardt, S. E., Cutrufelli, R., & Matthews, R. H. (1982). Composition of foods: Fruits and fruit juices: Raw, processed, prepared (No. 8–9). US Department of Agriculture, Human Nutrition Information Service.

    Google Scholar 

  • Hawkey, C. J. (1990). Non-steroidal anti-inflammatory drugs and peptic ulcers. BMJ, 300(6720), 278–284.

    Article  CAS  Google Scholar 

  • Hu, F. B. (2003). Plant-based foods and prevention of cardiovascular disease: An overview. American Journal of Clinical Nutrition, 8, 544S–551S.

    Article  Google Scholar 

  • Hyson, D. A. (2011). A comprehensive review of apples and apple components and their relationship to human health. Advances in Nutrition, 2(5), 408–420.

    Article  CAS  Google Scholar 

  • Janick, J. (1974). The apple in Java. Horticulture Science, 9, 13–15.

    Google Scholar 

  • Janick, J., Cummins, J. N., Brown, S. K., & Hemmat, M. (1996). Chapter 1: Apples. In J. Janick & J. N. Moore (Eds.), Fruit breeding, volume I: Tree and tropical fruits.

    Google Scholar 

  • Jensen, E. N., Buch-Andersen, T., Ravn-Haren, G., & Dragsted, L. O. (2009). Mini-review: The effects of apples on plasma cholesterol levels and cardiovascular risk—A review of the evidence. The Journal of Horticultural Science & Biotechnology, 84(6), 34–41.

    Article  Google Scholar 

  • Knekt, P., Kumpulainen, J., Järvinen, R., Rissanen, H., Heliövaara, M., Reunanen, A., Hakulinen, T., & Aromaa, A. (2002). Flavonoid intake and risk of chronic diseases. The American Journal of Clinical Nutrition, 76(3), 560–568.

    Google Scholar 

  • Lauri, P. É., Maguylo, K., & Trottier, C. (2006). Architecture and size relations: An essay on the apple (Malus × domestica, Rosaceae) tree. American Journal of Botany, 93(3), 357–368.

    Article  Google Scholar 

  • Lea, A. G. H., & Tinberlake, C. F. (1974). The phenolics of ciders: 1. Procyanidins. Journal of Science of Food and Agriculture, 25, 1537–1545.

    Article  CAS  Google Scholar 

  • Lee, C. Y. (2012). Common nutrients and nutraceutical quality of apples. New York fruit Quarterly, 20(3), 1–8.

    CAS  Google Scholar 

  • Leontowicz, H., Gorinstein, S., Lojek, A., Leontowicz, M., Čı́ž, M., Soliva-Fortuny, R., Park, Y. S., Jung, S. T., Trakhtenberg, S., & Martin-Belloso, O. (2002). Comparative content of some bioactive compounds in apples, peaches and pears and their influence on lipids and antioxidant capacity in rats. The Journal of Nutritional Biochemistry, 13(10), 603–610.

    Google Scholar 

  • Liu, R. H., Eberhardt, M. V., & Lee, C. Y. (2001). Antioxidant and antiproliferative activities of selected New York apple cultivars. New York Fruit Quarterly, 9(2), 15–17.

    Google Scholar 

  • Liu, R. H., & Sun, J. (2003). Antiproliferative activity of apples is not due to phenolic-induced hydrogen peroxide formation. Journal of Agricultural and Food Chemistry, 51(6), 1718–1723.

    Article  CAS  Google Scholar 

  • Lu, Y., & Foo, L. Y. (2000). Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chemistry, 68(1), 81–85.

    Article  CAS  Google Scholar 

  • Olthof, M. R., Hollman, P. C., Buijsman, M. N., Van Amelsvoort, J. M., & Katan, M. B. (2003). Chlorogenic acid, quercetin-3-rutinoside and black tea phenols are extensively metabolized in humans. The Journal of nutrition, 133(6), 1806–1814.

    Article  CAS  Google Scholar 

  • Peri, L., Pietraforte, D., Scorza, G., Napolitano, A., Fogliano, V., & Minetti, M. (2005). Apples increase nitric oxide production by human saliva at the acidic pH of the stomach: A new biological function for polyphenols with a catechol group? Free Radical Biology and Medicine, 39(5), 668–681.

    Article  CAS  Google Scholar 

  • Persic, M., Mikulic-Petkovsek, M., Slatnar, A., & Veberic, R. (2017). Chemical composition of apple fruit, juice and pomace and the correlation between phenolic content, enzymatic activity and browning. LWT-Food Science and Technology, 82, 23–31.

    Article  CAS  Google Scholar 

  • Redalen, G. (1987). Quality assessment of apple cultivars and selections. Fruit Breeding, 224, 441–448.

    Google Scholar 

  • Riboli, E., & Norat, T. (2003). Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk. The American Journal of Clinical Nutrition, 78(3), 559S–569S.

    Article  CAS  Google Scholar 

  • Scalbert, A., & Williamson, G. (2000). Dietary intake and bioavailability of polyphenols. The Journal of Nutrition, 130(8), 2073S–2085S.

    Article  CAS  Google Scholar 

  • Sesso, H. D., Gaziano, J. M., Liu, S., & Buring, J. E. (2003). Flavonoid intake and the risk of cardiovascular disease in women. The American Journal of Clinical Nutrition, 77(6), 1400–1408.

    Article  CAS  Google Scholar 

  • Shaheen, S. O., Sterne, J. A., Thompson, R. L., Songhurst, C. E., Margetts, B. M., & Burney, P. G. (2001). Dietary antioxidants and asthma in adults: Population based case–control study. American Journal of Respiratory and Critical Care Medicine, 164(10), 1823–1828.

    Google Scholar 

  • Sun, J., Chu, Y. F., Wu, X., & Liu, R. H. (2002). Antioxidant and antiproliferative activities of common fruits. Journal of Agricultural and Food Chemistry, 50(25), 7449–7454.

    Article  CAS  Google Scholar 

  • Thakur, B. R., Singh, R. K., Handa, A. K., & Rao, M. A. (1997). Chemistry and uses of pectin—A review. Critical Reviews in Food Science and Nutrition, 37(1), 47–73.

    Article  CAS  Google Scholar 

  • Tucker, K. L., Hannan, M. T., Chen, H., Cupples, L. A., Wilson, P. W., & Kiel, D. P. (1999). Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. The American Journal of Clinical Nutrition, 69(4), 727–736.

    Article  CAS  Google Scholar 

  • Vinson, J. A., Su, X., Zubik, L., & Bose, P. (2001). Phenol antioxidant quantity and quality in foods: fruits. Journal of Agricultural and Food Chemistry, 49(11), 5315–5321.

    Article  CAS  Google Scholar 

  • Walle, T., Otake, Y., Walle, U. K., & Wilson, F. A. (2000). Quercetin glucosides are completely hydrolyzed in ileostomy patients before absorption. The Journal of Nutrition, 130(11), 2658–2661.

    Article  CAS  Google Scholar 

  • Wolfe, K. L., & Liu, R. H. (2003). Apple peels as a value-added food ingredient. Journal of Agricultural and Food Chemistry, 51(6), 1676–1683.

    Article  CAS  Google Scholar 

  • Wolfe, K., Wu, X., & Liu, R. H. (2003). Antioxidant activity of apple peels. Journal of Agricultural and Food Chemistry, 51(3), 609–614.

    Google Scholar 

  • Woods, R. K., Walters, E. H., Raven, J. M., Wolfe, R., Ireland, P. D., Thien, F. C., & Abramson, M. J. (2003). Food and nutrient intakes and asthma risk in young adults. The American Journal of Clinical Nutrition, 78(3), 414–421.

    Google Scholar 

  • Wariaghli, G., Allali, F., & El Maghraoui, A. (2010). Osteoporosis in patients with primary biliary cirrhosis. Eurj Gastroenterol Hepatol, 22, 1397–1401.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hussain, S.Z., Naseer, B., Qadri, T., Fatima, T., Bhat, T.A. (2021). Apples (Pyrus Malus)—Morphology, Taxonomy, Composition and Health Benefits. In: Fruits Grown in Highland Regions of the Himalayas. Springer, Cham. https://doi.org/10.1007/978-3-030-75502-7_2

Download citation

Publish with us

Policies and ethics