Skip to main content

Separable Covariance Structure Identification for Doubly Multivariate Data

  • Chapter
  • First Online:
Multivariate, Multilinear and Mixed Linear Models

Abstract

The aim of this paper is to present two methods for the identification of separable covariance structures with both components unstructured, or with one component additionally structured as compound symmetry or first-order autoregression, for doubly multivariate data. As measures of discrepancy between an unstructured covariance matrix and the structured one, the Frobenius norm and the entropy loss function are used. The minimum of each discrepancy function is presented, and then simulation studies are performed to verify whether the considered discrepancy functions recognize the true covariance structure properly. An interpretation of the presented approach using a real data example is also given. This paper is mainly an overview of the papers by van Loan and Pitsianis [18], Filipiak and Klein [8], Filipiak et al. [10], Filipiak et al. [12].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bickel, P.J., Li, B.: Regularization in statistics. Test 15, 271–344 (2006)

    Article  MathSciNet  Google Scholar 

  2. Chen, C., Zhou, J., Pan, J.: Correlation structure regularization via entropy loss function for high-dimension and low-sample-size data. Commun. Stat. Simul. Comput. (2019). https://doi.org/10.1080/03610918.2019.1571607

  3. Cui, X., Li, C., Zhao, J., Zeng, L., Zhang, D., Pan, J.: Covariance structure regularization via Frobenius norm discrepancy. Linear Algebra Appl. 510, 124–145 (2016)

    Article  MathSciNet  Google Scholar 

  4. Dey, D.K., Srinivasan, C.: Estimation of a covariance matrix under Stein’s loss. Ann. Stat. 13, 1581–1591 (1985)

    Article  MathSciNet  Google Scholar 

  5. Devijver, E., Gallopin, M.: Block-diagonal covariance selection for high-dimensional Gaussian graphical models. J. Am. Stat. Assoc. 113, 306–314 (2018)

    Article  MathSciNet  Google Scholar 

  6. Dutilleul, P.: The MLE algorithm for the matrix normal distribution. J. Stat. Comput. Simul. 64, 105–123 (1999)

    Article  Google Scholar 

  7. Filipiak, K., Klein, D.: Estimation of parameters under a generalized growth curve model. J. Multivar. Anal. 158, 73–86 (2017)

    Article  MathSciNet  Google Scholar 

  8. Filipiak, K., Klein, D.: Approximation with a Kronecker product structure with one component as compound symmetry or autoregression. Linear Algebra Appl. 559, 11–33 (2018)

    Article  MathSciNet  Google Scholar 

  9. Filipiak, K., Klein, D., Roy, A.: A comparison of likelihood ratio tests and Rao’s score test for three separable covariance matrix structures. Biom. J. 59, 192–215 (2017)

    Article  MathSciNet  Google Scholar 

  10. Filipiak, K., Klein, D., Mokrzycka, M.: Estimators comparison of separable covariance structure with one component as compound symmetry matrix. Electron. J. Linear Algebra 33, 83–98 (2018)

    Google Scholar 

  11. Filipiak, K., Klein, D., Vojtková, E.: The properties of partial trace and block trace operators of partitioned matrix. Electron. J. Linear Algebra 33, 2–15 (2018)

    Google Scholar 

  12. Filipiak, K., Klein, D., Markiewicz, A., Mokrzycka, M.: Approximation with a Kronecker product structure with one component as compound symmetry or autoregression via entropy loss function. Linear Algebra Appl. 610, 625–646 (2021)

    Article  MathSciNet  Google Scholar 

  13. Gilson, M., Dahmen, D., Moreno-Bote, R., Insabato, A., Helias, M.: The covariance perceptron: a new framework for classification and processing of time series in recurrent neural networks. bioRxiv (2019). https://doi.org/10.1101/562546

  14. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York (2009)

    Google Scholar 

  15. James, W., Stein, C.: Estimation with quadratic loss. In: Neyman, J. (ed.) Proceedings of the Fourth Berkeley Symposium. Mathematical Statistics and Probability, vol. 1., pp. 361–379. The Statistical Laboratory, University of California, 30 June–30 July 1960. University of California Press (1961)

    Google Scholar 

  16. Kollo, T., von Rosen, D.: Advanced Multivariate Statistics with Matrices. Springer, Dordrecht (2005)

    Google Scholar 

  17. Lin, L., Higham, N.J., Pan, J.: Covariance structure regularization via entropy loss function. Comput. Stat. Data Anal. 72, 315–327 (2014)

    Article  MathSciNet  Google Scholar 

  18. van Loan, C.F., Pitsianis, N.: Approximation with Kronecker products. In: De Moor, B.L.R., Moonen, M.S., Golub, G.H. (eds.) Linear Algebra for Large Scale and Real-Time Applications, pp. 293–314. Kluwer Publications, Dordrecht, The Netherlands (1992)

    Google Scholar 

  19. Lu, N., Zimmerman, D.: The likelihood ratio test for a separable covariance matrix. Stat. Probab. Lett. 73, 449–457 (2005)

    Article  MathSciNet  Google Scholar 

  20. Magnus, J., Neudecker, H.: Symmetry, 0–1 matrices and Jacobians, a review. Econ. Theory 2, 157–190 (1986)

    Article  Google Scholar 

  21. McKiernan, S.H., Colman, R.J., Lopez, M., Beasley, T.M., Weindruch, R., Aiken, J.M.: Longitudinal analysis of early stage Sarcopenia in aging rhesus monkeys. Exp. Gerontol. 44, 170–176 (2009)

    Article  Google Scholar 

  22. Pan, J., Fang, K.: Growth Curve Models and Statistical Diagnostics. Springer, New York (2002)

    Google Scholar 

  23. Roy, A., Khattree, R.: Testing the hypothesis of a Kronecker product covariance matrix in multivariate repeated measures data. In: Proceedings of the 30th Annual SAS Users Group International Conference (SUGI 30), Philadelphia (2005)

    Google Scholar 

  24. Roy, A., Khattree, R.: Classification of multivariate repeated measures data with temporal autocorrelation. J. Appl. Stat. Sci. 15, 283–294 (2007)

    MathSciNet  Google Scholar 

  25. Srivastava, M., von Rosen, T., von Rosen, D.: Models with a Kronecker product covariance structure: estimation and testing. Math. Methods Stat. 17, 357–370 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank Stefan Banach International Mathematical Center, Institute of Mathematics of the Polish Academy of Sciences, Warsaw, for providing the opportunity and support for this paper. This research is partially supported by Scientific Activities No. 04/43/SBAD/0115 (Katarzyna Filipiak) and by the Slovak Research and Development Agency under contract no. APVV-17-0568 and VEGA MŠ SR 1/0311/18 (Daniel Klein).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Mokrzycka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Filipiak, K., Klein, D., Mokrzycka, M. (2021). Separable Covariance Structure Identification for Doubly Multivariate Data. In: Filipiak, K., Markiewicz, A., von Rosen, D. (eds) Multivariate, Multilinear and Mixed Linear Models. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-030-75494-5_5

Download citation

Publish with us

Policies and ethics