Abstract
The aim of this paper is to present two methods for the identification of separable covariance structures with both components unstructured, or with one component additionally structured as compound symmetry or first-order autoregression, for doubly multivariate data. As measures of discrepancy between an unstructured covariance matrix and the structured one, the Frobenius norm and the entropy loss function are used. The minimum of each discrepancy function is presented, and then simulation studies are performed to verify whether the considered discrepancy functions recognize the true covariance structure properly. An interpretation of the presented approach using a real data example is also given. This paper is mainly an overview of the papers by van Loan and Pitsianis [18], Filipiak and Klein [8], Filipiak et al. [10], Filipiak et al. [12].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bickel, P.J., Li, B.: Regularization in statistics. Test 15, 271–344 (2006)
Chen, C., Zhou, J., Pan, J.: Correlation structure regularization via entropy loss function for high-dimension and low-sample-size data. Commun. Stat. Simul. Comput. (2019). https://doi.org/10.1080/03610918.2019.1571607
Cui, X., Li, C., Zhao, J., Zeng, L., Zhang, D., Pan, J.: Covariance structure regularization via Frobenius norm discrepancy. Linear Algebra Appl. 510, 124–145 (2016)
Dey, D.K., Srinivasan, C.: Estimation of a covariance matrix under Stein’s loss. Ann. Stat. 13, 1581–1591 (1985)
Devijver, E., Gallopin, M.: Block-diagonal covariance selection for high-dimensional Gaussian graphical models. J. Am. Stat. Assoc. 113, 306–314 (2018)
Dutilleul, P.: The MLE algorithm for the matrix normal distribution. J. Stat. Comput. Simul. 64, 105–123 (1999)
Filipiak, K., Klein, D.: Estimation of parameters under a generalized growth curve model. J. Multivar. Anal. 158, 73–86 (2017)
Filipiak, K., Klein, D.: Approximation with a Kronecker product structure with one component as compound symmetry or autoregression. Linear Algebra Appl. 559, 11–33 (2018)
Filipiak, K., Klein, D., Roy, A.: A comparison of likelihood ratio tests and Rao’s score test for three separable covariance matrix structures. Biom. J. 59, 192–215 (2017)
Filipiak, K., Klein, D., Mokrzycka, M.: Estimators comparison of separable covariance structure with one component as compound symmetry matrix. Electron. J. Linear Algebra 33, 83–98 (2018)
Filipiak, K., Klein, D., Vojtková, E.: The properties of partial trace and block trace operators of partitioned matrix. Electron. J. Linear Algebra 33, 2–15 (2018)
Filipiak, K., Klein, D., Markiewicz, A., Mokrzycka, M.: Approximation with a Kronecker product structure with one component as compound symmetry or autoregression via entropy loss function. Linear Algebra Appl. 610, 625–646 (2021)
Gilson, M., Dahmen, D., Moreno-Bote, R., Insabato, A., Helias, M.: The covariance perceptron: a new framework for classification and processing of time series in recurrent neural networks. bioRxiv (2019). https://doi.org/10.1101/562546
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York (2009)
James, W., Stein, C.: Estimation with quadratic loss. In: Neyman, J. (ed.) Proceedings of the Fourth Berkeley Symposium. Mathematical Statistics and Probability, vol. 1., pp. 361–379. The Statistical Laboratory, University of California, 30 June–30 July 1960. University of California Press (1961)
Kollo, T., von Rosen, D.: Advanced Multivariate Statistics with Matrices. Springer, Dordrecht (2005)
Lin, L., Higham, N.J., Pan, J.: Covariance structure regularization via entropy loss function. Comput. Stat. Data Anal. 72, 315–327 (2014)
van Loan, C.F., Pitsianis, N.: Approximation with Kronecker products. In: De Moor, B.L.R., Moonen, M.S., Golub, G.H. (eds.) Linear Algebra for Large Scale and Real-Time Applications, pp. 293–314. Kluwer Publications, Dordrecht, The Netherlands (1992)
Lu, N., Zimmerman, D.: The likelihood ratio test for a separable covariance matrix. Stat. Probab. Lett. 73, 449–457 (2005)
Magnus, J., Neudecker, H.: Symmetry, 0–1 matrices and Jacobians, a review. Econ. Theory 2, 157–190 (1986)
McKiernan, S.H., Colman, R.J., Lopez, M., Beasley, T.M., Weindruch, R., Aiken, J.M.: Longitudinal analysis of early stage Sarcopenia in aging rhesus monkeys. Exp. Gerontol. 44, 170–176 (2009)
Pan, J., Fang, K.: Growth Curve Models and Statistical Diagnostics. Springer, New York (2002)
Roy, A., Khattree, R.: Testing the hypothesis of a Kronecker product covariance matrix in multivariate repeated measures data. In: Proceedings of the 30th Annual SAS Users Group International Conference (SUGI 30), Philadelphia (2005)
Roy, A., Khattree, R.: Classification of multivariate repeated measures data with temporal autocorrelation. J. Appl. Stat. Sci. 15, 283–294 (2007)
Srivastava, M., von Rosen, T., von Rosen, D.: Models with a Kronecker product covariance structure: estimation and testing. Math. Methods Stat. 17, 357–370 (2008)
Acknowledgements
The authors thank Stefan Banach International Mathematical Center, Institute of Mathematics of the Polish Academy of Sciences, Warsaw, for providing the opportunity and support for this paper. This research is partially supported by Scientific Activities No. 04/43/SBAD/0115 (Katarzyna Filipiak) and by the Slovak Research and Development Agency under contract no. APVV-17-0568 and VEGA MŠ SR 1/0311/18 (Daniel Klein).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Filipiak, K., Klein, D., Mokrzycka, M. (2021). Separable Covariance Structure Identification for Doubly Multivariate Data. In: Filipiak, K., Markiewicz, A., von Rosen, D. (eds) Multivariate, Multilinear and Mixed Linear Models. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-030-75494-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-75494-5_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-75493-8
Online ISBN: 978-3-030-75494-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)