Skip to main content

Contactless Monitoring for Healthcare Applications

Part of the Intelligent Systems Reference Library book series (ISRL,volume 207)

Abstract

Contactless sensors have brought a new way of patient monitoring for healthcare applications. The patient is only required to be in the vicinity of the sensor for health monitoring. Also, there is opportunity for a contactless sensing system to monitor multiple patients simultaneously, which is not possible with wearable contact-based sensors. As a result, a contactless monitoring system would require fewer resources and can be cost effective. In this chapter, different contactless physiological monitoring is discussed. Contactless cardiac and blood related monitoring is discussed including Electrocardiogram (ECG), heart rate, blood pressure etc. Respiratory monitoring is another important area which is included. Monitoring of neurological diseases is reviewed according to different applications. A limited analysis of blood glucose monitoring in diabetes is also provided. Majority of these works involve video camera, motion sensors and Doppler radar as a contactless sensor. In this work, it is intended to analyze the pros and cons of different contactless monitoring and their feasibility to use in various healthcare requirements such as hospitals, nursing homes and homes.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-75490-7_9
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-75490-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2
Fig. 9.3
Fig. 9.4
Fig. 9.5
Fig. 9.6
Fig. 9.7
Fig. 9.8
Fig. 9.9
Fig. 9.10
Fig. 9.11
Fig. 9.12
Fig. 9.13

References

  1. Aleksandrowicz, A., Leonhardt, S.: Wireless and non-contact ECG measurement system - the “Aachen SmartChair”. Acta Polytechnica 47(4), 68–71 (2007)

    Google Scholar 

  2. Czaplik, M., Eilebrecht, B., Walocha, R., Schauerte, P., Rossaint, R.: Clinical proof of practicability of a contactless ECG device. Eur. J. Anaesthesiol. (EJA) 27, 65–66 (2010)

    CrossRef  Google Scholar 

  3. Chamadiya, B., Mankodiya, K., Wagner, M., et al.: Textile-based, contactless ECG monitoring for non-ICU clinical settings. J. Ambient Intell. Human Comput. 4, 791–800 (2013)

    CrossRef  Google Scholar 

  4. Lim, Y.G., Kim, K.K., Park, K.S.: ECG recording on a bed during sleep without direct skin-contact. IEEE Trans. Biomed. Eng. 54(4), 718–725 (2007)

    CrossRef  Google Scholar 

  5. Lim, Y.G., Kim, K.K., Park, K.S.: ECG measurement on a chair without conductive contact. IEEE Trans. Biomed. Eng. 53(5), 956–959 (2006)

    CrossRef  Google Scholar 

  6. Weeks, J., Elsaadany, M., Lessard-Tremblay, M., et al.: A novel sensor-array system for contactless electrocardiogram acquisition. In: 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, Canada, pp. 4122–4125 (2020)

    Google Scholar 

  7. Lessard-Tremblay, M., Weeks, J., Morelli, L., et al.: Contactless capacitive electrocardiography using hybrid flexible printed electrodes. Sensors 20(18), 5156 (2020)

    CrossRef  Google Scholar 

  8. Babušiak, B., Šmondrk, M., Balogová, L., Gála, M.: Mattress topper with textile ECG electrodes. Fibres Text. 27(3), 25–28 (2020)

    Google Scholar 

  9. Hernández-Ortega, J., et al.: Morphological analysis on single lead contactless ECG monitoring based on a beat-template development. Comput. Cardiol. 41, 369–372 (2014)

    Google Scholar 

  10. Parente, F.R., Santonico, M., Zompanti, A., et al.: An electronic system for the contactless reading of ECG signals. Sensors (Basel) 17(11), 2474 (2017)

    CrossRef  Google Scholar 

  11. Bujnowski, A., Kaczmarek, M., Osiński, K., et al.: Capacitively coupled ECG measurements - a CMRR circuit improvement. In: Eskola, H., Väisänen, O., Viik, J., Hyttinen, J. (eds.) EMBEC & NBC, IFMBE Proceedings, vol. 65. Springer, Singapore (2018)

    Google Scholar 

  12. Wang, T.W., Lin, S.F.: Negative impedance capacitive electrode for ECG sensing through fabric layer. IEEE Trans. Instrum. Measur. 70, 1–8 (2021)

    Google Scholar 

  13. Verkruysse, W., Svaasand, L.O., Nelson, J.S.: Remote plethysmographic imaging using ambient light. Opt. Exp. 16(26), 21434–21445 (2008)

    CrossRef  Google Scholar 

  14. Poh, M.Z., McDuff, D.J., Picard, R.W.: Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Opt. Exp. 18(10), 10762–10774 (2010)

    CrossRef  Google Scholar 

  15. Rouast, P.V., Adam, M.T.P., Chiong, R., et al.: Remote heart rate measurement using low-cost RGB face video: a technical literature review. Front. Comput. Sci. 12, 858–872 (2018)

    CrossRef  Google Scholar 

  16. Lamba, P.S., Virmani, D.: Contactless heart rate estimation from face videos. J. Stat. Manag. Syst. 23(7), 1275–1284 (2020)

    Google Scholar 

  17. Maji, S., Massaroni, C., Schena, E., Silvestri, S.: Contactless heart rate monitoring using a standard RGB Camera. In: 2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT, Roma, Italy, pp. 729–733 (2020)

    Google Scholar 

  18. Obeid, D., Sadek, S., Zaharia, G., Zein, G.E.: Noncontact heartbeat detection at 2.4, 5.8, and 60 GHz. A comparative study. Microwave Opt. Technol. Lett. 51(3), 666–669 (2009)

    Google Scholar 

  19. El-Samad, S., Obeid, D., Zaharia, G., et al.: Heartbeat rate measurement using microwave systems: single-antenna, two-antennas, and modeling a moving person. Analog Integr. Circ. Sig. Process 96, 269–282 (2018)

    CrossRef  Google Scholar 

  20. Arsalan, M., Santra, A., Will, C.: Improved contactless heartbeat estimation in FMCW radar via Kalman filter tracking. IEEE Sens. Lett. 4(5), 1–4 (2020)

    CrossRef  Google Scholar 

  21. Rodríguez, A.M., Ramos-Castro, J.: Video pulse rate variability analysis in stationary and motion conditions. Biomed. Eng. Online 17(1), 11 (2018)

    CrossRef  Google Scholar 

  22. Jeong, I.C., Finkelstein, J.: Introducing contactless blood pressure assessment using a high speed video camera. J. Med. Syst. 40(4), 77 (2016)

    CrossRef  Google Scholar 

  23. Fan, X., Ye, Q., Yang, X., et al.: Robust blood pressure estimation using an RGB camera. J. Ambient Intell. Human Comput. (2018). https://doi.org/10.1007/s12652-018-1026-6

    CrossRef  Google Scholar 

  24. Fan, X., Tjahjadi, T.: Robust contactless pulse transit time estimation based on signal quality metric. Pattern Recognit. Lett. 137, 12–16 (2020)

    CrossRef  Google Scholar 

  25. Luo, H., Yang, D., Barszczyk, A., et al.: Smartphone-based blood pressure measurement using transdermal optical imaging technology. Circ. Cardiovasc. Imaging 12(8), (2019)

    CrossRef  Google Scholar 

  26. Kamshilin, A.A., Zaytsev, V.V., Mamontov, O.V.: Novel contactless approach for assessment of venous occlusion plethysmography by video recordings at the green illumination. Sci. Rep. 7(1), 464 (2017)

    CrossRef  Google Scholar 

  27. Zaytsev, V.V., Miridonov, S.V., Mamontov, O.V., Kamshilin, A.A.: Contactless monitoring of the blood-flow changes in upper limbs. Biomed. Opt. Exp. 9(11), 5387–5399 (2018)

    CrossRef  Google Scholar 

  28. Nakano, K., Aoki, Y., Satoh, R., et al.: Visualization of venous compliance of superficial veins using non-contact plethysmography based on digital red-green-blue images. Sensors (Basel) 16(12), 1996 (2016)

    CrossRef  Google Scholar 

  29. Webster, J.: Design of Pulse Oximeters. Institute of Physics, Bristol (1997)

    CrossRef  Google Scholar 

  30. Wieringa, F., Mastik, F., Steen, V.D.: Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 Camera” technology. Ann. Biomed. Eng. 33(8), 1034–1041 (2005)

    CrossRef  Google Scholar 

  31. Humphreys, K., Ward, T., Markham, C.: Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry. Rev. Sci. Instrum. 78, 044304–044306 (2007)

    CrossRef  Google Scholar 

  32. Shao, D., Liu, C., Tsow, F., et al.: Noncontact monitoring of blood oxygen saturation using camera and dual-wavelength imaging system. IEEE Trans. Biomed. Eng. 63(6), 1091–1098 (2015)

    CrossRef  Google Scholar 

  33. Bal, U.: Non-contact estimation of heart rate and oxygen saturation using ambient light. Biomed. Opt. Exp. 6, 86–97 (2015)

    CrossRef  Google Scholar 

  34. Guazzi, A.R., Villarroel, M., Jorge, J., et al.: Non-contact measurement of oxygen saturation with an RGB camera. Biomed. Opt. Exp. 6, 3320–3338 (2015)

    CrossRef  Google Scholar 

  35. Verkruysse, W., Bartula, M., Bresch, E., et al.: Calibration of contactless pulse oximetry. Anesth. Analg. 124(1), 136–145 (2017)

    CrossRef  Google Scholar 

  36. Tan, K.S., Saatchi, R., Elphick, H., et al.: Real-time vision based respiration monitoring system. In: 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), Newcastle upon Tyne, pp. 770–774 (2010)

    Google Scholar 

  37. Bartula, M., Tigges, T., Muehlsteff. J.: Camera-based system for contactless monitoring of respiration. In: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, pp. 2672–2675 (2013)

    Google Scholar 

  38. Bernacchia, N., Scalise, L., Casacanditella, L., et al.: Non contact measurement of heart and respiration rates based on Kinect™. In: IEEE International Symposium on Medical Measurements and Applications (MeMeA), Lisboa, pp1–5 (2014)

    Google Scholar 

  39. Lukac, T., Pucik, J., Chrenko, L.: Contactless recognition of respiration phases using web camera. In: IEEE RADIOELEKTRONIKA, 24th International Conference, pp. 1–4 (2014)

    Google Scholar 

  40. Ganfure, G.O.: Using video stream for continuous monitoring of breathing rate for general setting. SIViP 13, 1395–1403 (2019)

    CrossRef  Google Scholar 

  41. Janssen, R., Wang, W., Moço, A., et al.: Video-based respiration monitoring with automatic region of interest detection. Physiol. Meas. 37(1), 100–114 (2016)

    CrossRef  Google Scholar 

  42. Massaroni, C., Lo Presti, D., Formica, D., et al.: Non-contact monitoring of breathing pattern and respiratory rate via RGB signal measurement. Sensors (Basel) 19(12), 2758 (2019)

    CrossRef  Google Scholar 

  43. Sanyal, S., Nundy, K.K.: Algorithms for monitoring heart rate and respiratory rate from the video of a user’s face. IEEE J. Transl. Eng. Health Med. 6, 1–11 (2018)

    CrossRef  Google Scholar 

  44. Min, S.D., Kim, J.K., Shin, H.S., et al.: Noncontact respiration rate measurement system using an ultrasonic proximity sensor. IEEE Sens. J. 10, 1732–1739 (2010)

    CrossRef  Google Scholar 

  45. Lee, Y.S., Pathirana, P.N., Evans, R.J., et al.: Noncontact detection and analysis of respiratory function using microwave doppler radar. J. Sensors (2015). https://doi.org/10.1155/2015/548136

    CrossRef  Google Scholar 

  46. Sun, G., Matsui, T.: Rapid and stable measurement of respiratory rate from Doppler radar signals using time domain autocorrelation model. In: Conference Proceedings IEEE Engineering Medicine and Biology Society, pp. 5985–5988 (2015)

    Google Scholar 

  47. Alemaryeen, A., Noghanian, S., Fazel-Rezai, R.: Respiratory rate measurements via Doppler radar for health monitoring applications. In: 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo, pp. 829–832 (2017)

    Google Scholar 

  48. Goldfine, C.E., Oshim, F.T., Carreiro, S.P., et al.: Respiratory rate monitoring in clinical environments with a contactless ultra-wideband impulse radar-based sensor system. In: Proceedings of Annual Hawaii International Conference on System Sciences, pp. 3366–3375 (2020)

    Google Scholar 

  49. Procházka, A., Schätz, M., Centonze, F., et al.: Extraction of breathing features using MS kinect for sleep stage detection. SIViP 10, 1279–1286 (2016)

    CrossRef  Google Scholar 

  50. Siam, A.I., El-Bahnasawy, N.A., El Banby, G.M., et al.: Efficient video-based breathing pattern and respiration rate monitoring for remote health monitoring. J. Opt. Soc. Am. A 37(11), C118–C124 (2020)

    CrossRef  Google Scholar 

  51. Tran, V.P., Al-Jumaily, A.A., Islam, S.M.S.: Doppler radar-based non-contact health monitoring for obstructive sleep apnea diagnosis: a comprehensive review. Big Data Cogn. Comput. 3(1), 3 (2019)

    CrossRef  Google Scholar 

  52. Yang, X., Fan, D., Ren, A., et al.: Diagnosis of the hypopnea syndrome in the early stage. Neural Comput. Appl. 32, 855–866 (2020)

    CrossRef  Google Scholar 

  53. Abramiuc, B., Zinger, S., de With, P.H.N., et al.: Home video monitoring system for neurodegenerative diseases based on commercial HD cameras. In: IEEE 5th International Conference on Consumer Electronics—Berlin (ICCE-Berlin), pp. 489–492 (2015)

    Google Scholar 

  54. Shi, W.Y., Chiao, J.-C.: Contactless hand tremor detector based on an inductive sensor. In: IEEE Dallas Circuits and Systems Conference (DCAS), Arlington, TX, pp. 1–4 (2016)

    Google Scholar 

  55. Almagooshi, S., Hakami, M., Alsayyari, M., et al.: An assisted living home for Alzheimer’s patient in Saudi Arabia, a prototype. In: Stephanidis, C. (eds) HCI International 2015 - Posters’ Extended Abstracts. HCI: Communications in Computer and Information Science, p. 529. Springer, Cham (2015)

    Google Scholar 

  56. Lam, K., Tsang, N.W., Han, S., et al.: Activity tracking and monitoring of patients with Alzheimer’s disease. Multimed. Tools Appl. (2015). https://doi.org/10.1007/s11042-015-3047-x

    CrossRef  Google Scholar 

  57. Nikishina, V.B., Petrash, E.A., Nikishin, I.I.: Application of a hardware and software system of computer vision for rehabilitation training of post-stroke patients. Biomed. Eng. 53, 44–50 (2019)

    CrossRef  Google Scholar 

  58. So, C.F., Choi, K.S., Wong, T.K., et al.: Recent advances in noninvasive glucose monitoring. Med. Devices (Auckl.) 5, 45–52 (2012)

    Google Scholar 

  59. Kim, J., Campbell, A.S., Wang, J.: Wearable non-invasive epidermal glucose sensors: a review. Talanta 177, 163–170 (2018)

    CrossRef  Google Scholar 

  60. Novikov, I.A.: Noninvasive determination of blood glucose concentration by comparing the eardrum and head skin temperatures. Biomed. Eng. 51, 341–345 (2018)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Atiqur Rahman Ahad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Nahiyan, K.M.T., Ahad, M.A.R. (2021). Contactless Monitoring for Healthcare Applications. In: Ahad, M.A.R., Inoue, A. (eds) Vision, Sensing and Analytics: Integrative Approaches. Intelligent Systems Reference Library, vol 207. Springer, Cham. https://doi.org/10.1007/978-3-030-75490-7_9

Download citation