Mokari, M., Mohammadzade, H., Ghojogh, B.: Recognizing involuntary actions from 3D skeleton data using body states. arXiv preprint arXiv:1708.06227 (2017)
Weng, J., Weng, C., Yuan, J.: Spatio-temporal Naive-Bayes nearest-neighbor (ST-NBNN) for skeleton-based action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4171–4180 (2017)
Google Scholar
Asadi-Aghbolaghi, M., Bertiche, H., Roig, V., Kasaei, S., Escalera, S.: Action recognition from RGB-D data: comparison and fusion of spatio-temporal handcrafted features and deep strategies. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 3179–3188 (2017)
Google Scholar
Dang, L.M., Min, K., Wang, H., Piran, M.J., Lee, C.H., Moon, H.: Sensor-based and vision-based human activity recognition: a comprehensive survey. Pattern Recogn. 108, 107561 (2020)
CrossRef
Google Scholar
Jegham, I., Khalifa, A.B., Alouani, I., Mahjoub, M.A.: Vision-based human action recognition: an overview and real world challenges. Forensic Sci. Int.: Digit. Invest. 32, 200901 (2020)
Google Scholar
Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)
Google Scholar
Gaglio, S., Re, G.L., Morana, M.: Human activity recognition process using 3-D posture data. IEEE Trans. Hum.-Mach. Syst. 45(5), 586–597 (2014)
CrossRef
Google Scholar
Xia, L., Chen, C.C., Aggarwal, J.K.: View invariant human action recognition using histograms of 3D joints. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 20–27. IEEE (2012)
Google Scholar
Seidenari, L., Varano, V., Berretti, S., Bimbo, A., Pala, P.: Recognizing actions from depth cameras as weakly aligned multi-part bag-of-poses. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 479–485 (2013)
Google Scholar
Shahroudy, A., Liu, J., Ng, T.T., Wang, G.: NTU RGB+D: a large scale dataset for 3D human activity analysis. In: IEEE Conference on Computer Vision and Pattern Recognition, June 2016
Google Scholar
Liu, J., Shahroudy, A., Perez, M., Wang, G., Duan, L.-Y., Kot, A.C.: NTU RGB+D 120: a large-scale benchmark for 3D human activity understanding. IEEE Trans. Pattern Anal. Mach. Intell. 42, 2684–2701 (2019)
CrossRef
Google Scholar
Carreira, J., Zisserman, A.: Quo Vadis, action recognition? A new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)
Google Scholar
Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E., Sheikh, Y.: OpenPose: realtime multi-person 2D pose estimation using part affinity fields. arXiv preprint arXiv:1812.08008 (2018)
Li, B., Li, X., Zhang, Z., Fei, W.: Spatio-temporal graph routing for skeleton-based action recognition. Proc. AAAI Conf. Artif. Intell. 33, 8561–8568 (2019)
Google Scholar
Li, M., Chen, S., Chen, X., Zhang, Y., Wang, Y., Tian, Q.: Actional-structural graph convolutional networks for skeleton-based action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3595–3603 (2019)
Google Scholar
Shi, L., Zhang, Y., Cheng, J., Lu, H.: Two-stream adaptive graph convolutional networks for skeleton-based action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12026–12035 (2019)
Google Scholar
Shi, L., Zhang, Y., Cheng, J., Lu, H.: Skeleton-based action recognition with directed graph neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7912–7921 (2019)
Google Scholar
Zhang, X., Xu, C., Tao, D.: Context aware graph convolution for skeleton-based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14333–14342 (2020)
Google Scholar
Cho, S., Maqbool, M., Liu, F., Foroosh, H.: Self-attention network for skeleton-based human action recognition. In: The IEEE Winter Conference on Applications of Computer Vision, pp. 635–644 (2020)
Google Scholar
Liu, Z., Zhang, H., Chen, Z., Wang, Z., Ouyang, W.: Disentangling and unifying graph convolutions for skeleton-based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 143–152 (2020)
Google Scholar
Yang, W., Zhang, J., Cai, J., Zhiyong, X.: Shallow graph convolutional network for skeleton-based action recognition. Sensors 21(2), 452 (2021)
CrossRef
Google Scholar
Xie, J., et al.: Cross-channel graph convolutional networks for skeleton-based action recognition. IEEE Access 9, 9055–9065 (2021)
CrossRef
Google Scholar
Ahmad, T., Jin, L., Lin, L., Tang, G.Z.: Skeleton-based action recognition using sparse spatio-temporal GCN with edge effective resistance. Neurocomputing 423, 389–398 (2021)
CrossRef
Google Scholar
Xia, H., Gao, X.: Multi-scale mixed dense graph convolution network for skeleton-based action recognition. IEEE Access 9, 36475–36484 (2021)
CrossRef
Google Scholar
Cai, J., Jiang, N., Han, X., Jia, K., Lu, J.: JOLO-GCN: mining joint-centered light-weight information for skeleton-based action recognition. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2735–2744 (2021)
Google Scholar
Ji, Y., Xu, F., Yang, Y., Shen, F., Shen, H.T., Zheng, W.-S.: A large-scale varying-view RGB-D action dataset for arbitrary-view human action recognition. arXiv preprint arXiv:1904.10681 (2019)
Capecci, M., et al.: The KIMORE dataset: kinematic assessment of movement and clinical scores for remote monitoring of physical rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 27(7), 1436–1448 (2019)
CrossRef
Google Scholar
Rahmani, H., Mahmood, A., Huynh, D., Mian, A.: Histogram of oriented principal components for cross-view action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 38(12), 2430–2443 (2016)
CrossRef
Google Scholar
Liu, C., Hu, Y., Li, Y., Song, S., Liu, J.: PKU-MMD: a large scale benchmark for continuous multi-modal human action understanding. arXiv preprint arXiv:1703.07475 (2017)
Kong, Q., Wu, Z., Deng, Z., Klinkigt, M., Tong, B., Murakami, T.: MMAct: a large-scale dataset for cross modal human action understanding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 8658–8667 (2019)
Google Scholar
Li, W., Zhang, Z., Liu, Z.: Action recognition based on a bag of 3D points. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, pp. 9–14. IEEE (2010)
Google Scholar
Wang, J., Liu, Z., Wu, Y., Yuan, J.: Mining actionlet ensemble for action recognition with depth cameras. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1290–1297. IEEE (2012)
Google Scholar
Chen, C., Jafari, R., Kehtarnavaz, N.: UTD-MHAD: a multimodal dataset for human action recognition utilizing a depth camera and a wearable inertial sensor. In: 2015 IEEE International conference on image processing (ICIP), pp. 168–172. IEEE (2015)
Google Scholar
Wang, J., Nie, X., Xia, Y., Wu, Y., Zhu, S.-C.: Cross-view action modeling, learning and recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2649–2656 (2014)
Google Scholar
Zhu, W., et al.: Co-occurrence feature learning for skeleton based action recognition using regularized deep LSTM networks. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)
Google Scholar
Li, S., Jiang, T., Huang, T., Tian, Y.: Global co-occurrence feature learning and active coordinate system conversion for skeleton-based action recognition. In: The IEEE Winter Conference on Applications of Computer Vision, pp. 586–594 (2020)
Google Scholar
Dean, J., et al.: Large scale distributed deep networks. In: Advances in Neural Information Processing Systems, pp. 1223–1231 (2012)
Google Scholar
Zhao, R., Wang, K., Su, H., Ji, Q.: Bayesian graph convolution LSTM for skeleton based action recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6882–6892 (2019)
Google Scholar
Si, C., Chen, W., Wang, W., Wang, L., Tan, T.: An attention enhanced graph convolutional LSTM network for skeleton-based action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1227–1236 (2019)
Google Scholar
Si, C., Jing, Y., Wang, W., Wang, L., Tan, T.: Skeleton-based action recognition with spatial reasoning and temporal stack learning. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 103–118 (2018)
Google Scholar
Liu, J., Shahroudy, A., Xu, D., Kot, A.C., Wang, G.: Skeleton-based action recognition using spatio-temporal LSTM network with trust gates. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 3007–3021 (2017)
CrossRef
Google Scholar
Huang, J., Xiang, X., Gong, X., Zhang, B., et al.: Long-short graph memory network for skeleton-based action recognition. In: The IEEE Winter Conference on Applications of Computer Vision, pp. 645–652 (2020)
Google Scholar
Zhang, P., Lan, C., Xing, J., Zeng, W., Xue, J., Zheng, N.: View adaptive recurrent neural networks for high performance human action recognition from skeleton data. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2117–2126 (2017)
Google Scholar
Lee, I., Kim, D., Kang, S., Lee, S.: Ensemble deep learning for skeleton-based action recognition using temporal sliding LSTM networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1012–1020 (2017)
Google Scholar
Ke, Q., Bennamoun, M., An, S., Sohel, F., Boussaid, F.: Learning clip representations for skeleton-based 3D action recognition. IEEE Trans. Image Process. 27(6), 2842–2855 (2018)
MathSciNet
CrossRef
Google Scholar
Luvizon, D., Picard, D., Tabia, H.: Multi-task deep learning for real-time 3D human pose estimation and action recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2020)
Google Scholar
Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation: new benchmark and state of the art analysis. In: Proceedings of the IEEE Conference on computer Vision and Pattern Recognition, pp. 3686–3693 (2014)
Google Scholar
Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2013)
Google Scholar
Morais, R., Le, V., Tran, T., Saha, B., Mansour, M., Venkatesh, S.: Learning regularity in skeleton trajectories for anomaly detection in videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11996–12004 (2019)
Google Scholar
Tang, Y., Tian, Y., Lu, J., Li, P., Zhou, J.: Deep progressive reinforcement learning for skeleton-based action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5323–5332 (2018)
Google Scholar
Baek, S., Kim, K.I., Kim, T.-K.: Augmented skeleton space transfer for depth-based hand pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8330–8339 (2018)
Google Scholar
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
Google Scholar
Gammulle, H., Denman, S., Sridharan, S., Fookes, C.: Fine-grained action segmentation using the semi-supervised action GAN. Pattern Recogn. 98, 107039 (2020)
CrossRef
Google Scholar
Lv, F., Nevatia, R.: Recognition and segmentation of 3-D human action using HMM and multi-class AdaBoost. In: European Conference on Computer Vision, pp. 359–372. Springer (2006)
Google Scholar
Wu, D., Shao, L.: Leveraging hierarchical parametric networks for skeletal joints based action segmentation and recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 724–731 (2014)
Google Scholar
Rahmani, H., Bennamoun, M.: Learning action recognition model from depth and skeleton videos. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5832–5841 (2017)
Google Scholar
Ke, Q., Bennamoun, M., An, S., Sohel, F., Boussaid, F.: A new representation of skeleton sequences for 3D action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3288–3297 (2017)
Google Scholar
Zhang, P., Lan, C., Xing, J., Zeng, W., Xue, J., Zheng, N.: View adaptive neural networks for high performance skeleton-based human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1963–1978 (2019)
CrossRef
Google Scholar
Nie, Q., Wang, J., Wang, X., Liu, Y.: View-invariant human action recognition based on a 3D bio-constrained skeleton model. IEEE Trans. Image Process. 28(8), 3959–3972 (2019)
MathSciNet
CrossRef
Google Scholar
Su, K., Liu, X., Shlizerman, E.: Predict & cluster: unsupervised skeleton based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9631–9640 (2020)
Google Scholar
Tian, D., Lu, Z.-M., Chen, X., Ma, L.-H.: An attentional spatial temporal graph convolutional network with co-occurrence feature learning for action recognition. Multimed. Tools Appl. 2020, 1–19 (2020)
Google Scholar
Cheng, K., Zhang, Y., He, X., Chen, W., Cheng, J., Lu, H.: Skeleton-based action recognition with shift graph convolutional network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 183–192 (2020)
Google Scholar
Main de Boissiere, A., Noumeir, R.: Infrared and 3D skeleton feature fusion for RGB-D action recognition. arXiv preprint arXiv:2002.12886 (2020)
Dong, J., et al.: Action recognition based on the fusion of graph convolutional networks with high order features. Appl. Sci. 10(4), 1482 (2020)
CrossRef
Google Scholar
Wang, H., Baosheng, Yu., Xia, K., Li, J., Zuo, X.: Skeleton edge motion networks for human action recognition. Neurocomputing 423, 1–12 (2021)
CrossRef
Google Scholar
Liu, J., Wang, G., Hu, P., Duan, L.-Y., Kot, A.C.: Global context-aware attention LSTM networks for 3D action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1647–1656 (2017)
Google Scholar
Liu, M., Liu, H., Chen, C.: Enhanced skeleton visualization for view invariant human action recognition. Pattern Recogn. 68, 346–362 (2017)
CrossRef
Google Scholar
Jian-Fang, H., Zheng, W.-S., Ma, L., Wang, G., Lai, J., Zhang, J.: Early action prediction by soft regression. IEEE Trans. Pattern Anal. Mach. Intell. 41(11), 2568–2583 (2018)
Google Scholar
Liu, J., Shahroudy, A., Wang, G., Duan, L.-Y., Kot, A.C.: Skeleton-based online action prediction using scale selection network. IEEE Trans. Pattern Anal. Mach. Intell. 42(6), 1453–1467 (2019)
CrossRef
Google Scholar
Papadopoulos, K., Ghorbel, E., Aouada, D., Ottersten, B.: Vertex feature encoding and hierarchical temporal modeling in a spatial-temporal graph convolutional network for action recognition. arXiv preprint arXiv:1912.09745 (2019)
Huynh-The, T., Hua, C.-H., Tu, N.A., Kim, D.-S.: Learning geometric features with dual–stream CNN for 3D action recognition. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2353–2357. IEEE (2020)
Google Scholar
Kong, Y., Fu, Y.: Bilinear heterogeneous information machine for RGB-D action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1054–1062 (2015)
Google Scholar
Li, X., Zhang, Y., Zhang, J.: Improved key poses model for skeleton-based action recognition. In: Pacific Rim Conference on Multimedia, pp. 358–367. Springer (2017)
Google Scholar
Zhang, X., Xu, C., Tian, X., Tao, D.: Graph edge convolutional neural networks for skeleton-based action recognition. IEEE Trans. Neural Netw. Learn. Syst. 31(8), 3047–3060 (2019)
CrossRef
Google Scholar