Skip to main content

Electrical Impedance Tomography Based Lung Disease Monitoring

  • 482 Accesses

Part of the Intelligent Systems Reference Library book series (ISRL,volume 207)

Abstract

Electrical impedance measurements can detect many diseases and disorders in the human body. Electrical Impedance Tomography (EIT) is a fast-developing medical imaging technique. In this chapter, we present some applications of EIT in lung disease detection. Existing literature in this subject has been investigated, including original research work on EIT based lung imaging, carried out in clinical settings for particular respiratory diseases: Acute respiratory distress syndrome (ARDS), Chronic obstructive pulmonary disease (COPD), Cystic fibrosis, Pneumonia, and Pleural effusion. Information about the purpose of the tests, studied subjects, the procedure followed, and results of analysis have been included as well as limitations of the studies. EIT is a promising technique in the direction of non-invasive diagnostic medicine because this can perform imaging of the human body, without posing any visible risk.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-75490-7_11
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-75490-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 11.1
Fig. 11.2

References

  1. Adler, A., Boyle, A.: Electrical impedance tomography: tissue properties to image measures. IEEE Trans. Biomed. Eng. 64(11), 2494–2504 (2017)

    CrossRef  Google Scholar 

  2. Brown, B., Barber, D., Seagar, A.: Applied potential tomography: possible clinical applications. Clin. Phys. Physiol. Meas. 6(2), 109 (1985)

    CrossRef  Google Scholar 

  3. Frerichs, I.: Electrical impedance tomography (EIT) in applications related to lung and ventilation: a review of experimental and clinical activities. Physiol. Meas. 21(2), R1 (2000)

    CrossRef  Google Scholar 

  4. Chitturi, V., Farrukh, N.: Spatial resolution in electrical impedance tomography: a topical review. J. Electr. Bioimpedance 8(1), 66–78 (2019)

    CrossRef  Google Scholar 

  5. Allaud, L., Martin, M.: Schlumberger: The History of a Technique. Wiley, Hoboken (1977)

    Google Scholar 

  6. Bodenstein, M., David, M., Markstaller, K.: Principles of electrical impedance tomography and its clinical application. Crit. Care Med. 37(2), 713–724 (2009)

    CrossRef  Google Scholar 

  7. Silvera-Tawil, D., Rye, D., Soleimani, M., Velonaki, M.: Electrical impedance tomography for artificial sensitive robotic skin: a review. IEEE Sens. J. 15(4), 2001–2016 (2014)

    CrossRef  Google Scholar 

  8. Henderson, R.P., Webster, J.G.: An impedance camera for spatially specific measurements of the thorax. IEEE Trans. Biomed. Eng. 3, 250–254 (1978)

    CrossRef  Google Scholar 

  9. Woo, E.J., Seo, J.K.: Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging. Physiol. Meas. 29(10), R1 (2008)

    CrossRef  Google Scholar 

  10. Muftuler, L.T., Hamamura, M., Birgul, O., Nalcioglu, O.: Resolution and contrast in magnetic resonance electrical impedance tomography (MREIT) and its application to cancer imaging. Technol. Cancer Res. Treat. 3(6), 599–609 (2004)

    CrossRef  Google Scholar 

  11. Assenheimer, M., Laver-Moskovitz, O., Malonek, D., Manor, D., Nahaliel, U., Nitzan, R., Saad, A.: The T-scan TM technology: electrical impedance as a diagnostic tool for breast cancer detection. Physiol. Meas. 22(1), 1 (2001)

    CrossRef  Google Scholar 

  12. Borsic, A., Halter, R., Wan, Y., Hartov, A., Paulsen, K.: Sensitivity study and optimization of a 3D electric impedance tomography prostate probe. Physiol. Meas. 30(6), S1 (2009)

    CrossRef  Google Scholar 

  13. Frerichs, I., Amato, M.B., Van Kaam, A.H., Tingay, D.G., Zhao, Z., Grychtol, B., Bodenstein, M., Gagnon, H., Böhm, S.H., Teschner, E., et al.: Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the translational EIT development study group. Thorax 72(1), 83–93 (2017)

    CrossRef  Google Scholar 

  14. Vogt, B., Ehlers, K., Hennig, V., Zhao, Z., Weiler, N., Frerichs, I.: Heterogeneity of regional ventilation in lung-healthy adults (2016)

    Google Scholar 

  15. Aristovich, K.Y., dos Santos, G.S., Packham, B.C., Holder, D.S.: A method for reconstructing tomographic images of evoked neural activity with electrical impedance tomography using intracranial planar arrays. Physiol. Meas. 35(6), 1095 (2014)

    CrossRef  Google Scholar 

  16. Durlak, W., Kwinta, P.: Role of electrical impedance tomography in clinical practice in pediatric respiratory medicine. ISRN Pediatrics, vol. 2013 (2013)

    Google Scholar 

  17. Hahn, G., Sipinkova, I., Baisch, F., Hellige, G.: Changes in the thoracic impedance distribution under different ventilatory conditions. Physiol. Meas. 16(3A), A161 (1995)

    CrossRef  Google Scholar 

  18. Fuks, L.F., Cheney, M., Isaacson, D., Gisser, D.G., Newell, J.: Detection and imaging of electric conductivity and permittivity at low frequency. IEEE Trans. Biomed. Eng. 38(11), 1106–1110 (1991)

    CrossRef  Google Scholar 

  19. Hahn, G., Just, A., Dudykevych, T., Frerichs, I., Hinz, J., Quintel, M., Hellige, G.: Imaging pathologic pulmonary air and fluid accumulation by functional and absolute eit. Physiol. Meas. 27(5), S187 (2006)

    CrossRef  Google Scholar 

  20. Jang, G.Y., Ayoub, G., Kim, Y.E., Oh, T.I., Chung, C.R., Suh, G.Y., Woo, E.J.: Integrated EIT system for functional lung ventilation imaging. Biomed. Eng. Online 18(1), 83 (2019)

    CrossRef  Google Scholar 

  21. Barišin, S., Ostovic, H., Prazetina, M., Sojcic, N., Gospic, I., Bradic, N.: Electrical impedance tomography as ventilation monitoring in ICU patients. Signa Vitae: J. Intensive Care Emerg. Med. 14(Supplement 1), 21–23 (2018)

    Google Scholar 

  22. Pulletz, S., Kott, M., Elke, G., Schädler, D., Vogt, B., Weiler, N., Frerichs, I.: Dynamics of regional lung aeration determined by electrical impedance tomography in patients with acute respiratory distress syndrome. Multidiscip. Respir. Med. 7(1), 44 (2012)

    CrossRef  Google Scholar 

  23. Gomez-Laberge, C., Arnold, J.H., Wolf, G.K.: A unified approach for EIT imaging of regional overdistension and atelectasis in acute lung injury. IEEE Trans. Med. Imaging 31(3), 834–842 (2012)

    CrossRef  Google Scholar 

  24. Mauri, T., Bellani, G., Confalonieri, A., Tagliabue, P., Turella, M., Coppadoro, A., Citerio, G., Pesenti, A., et al.: Topographic distribution of tidal ventilation in acute respiratory distress syndrome: effects of positive end-expiratory pressure and pressure support. Crit. Care Med. 41(7), 1664–1673 (2013)

    CrossRef  Google Scholar 

  25. Yoshida, T., Torsani, V., Gomes, S., De Santis, R.R., Beraldo, M.A., Costa, E.L., Tucci, M.R., Zin, W.A., Kavanagh, B.P., Amato, M.B.: Spontaneous effort causes occult pendelluft during mechanical ventilation. Am. J. Respir. Crit. Care Med. 188(12), 1420–1427 (2013)

    CrossRef  Google Scholar 

  26. Blankman, P., Van Der Kreeft, S., Gommers, D.: Tidal ventilation distribution during pressure-controlled ventilation and pressure support ventilation in post-cardiac surgery patients. Acta Anaesthesiol. Scand. 58(8), 997–1006 (2014)

    CrossRef  Google Scholar 

  27. Cinnella, G., Grasso, S., Raimondo, P., D’Antini, D., Mirabella, L., Rauseo, M., Dambrosio, M.: Physiological effects of the open lung approach in patients with early, mild, diffuse acute respiratory distress syndrome: an electrical impedance tomography study. Anesthesiol. J. Am. Soc. Anesthesiol. 123(5), 1113–1121 (2015)

    Google Scholar 

  28. Long, Y., Liu, D.-W., He, H.-W., Zhao, Z.-Q.: Positive end-expiratory pressure titration after alveolar recruitment directed by electrical impedance tomography. Chin. Med. J. 128(11), 1421 (2015)

    CrossRef  Google Scholar 

  29. Gong, B., Krueger-Ziolek, S., Moeller, K., Schullcke, B., Zhao, Z.: Electrical impedance tomography: functional lung imaging on its way to clinical practice? Expert Rev. Respir. Med. 9(6), 721–737 (2015)

    CrossRef  Google Scholar 

  30. Mauri, T., Eronia, N., Turrini, C., Battistini, M., Grasselli, G., Rona, R., Volta, C.A., Bellani, G., Pesenti, A.: Bedside assessment of the effects of positive end-expiratory pressure on lung inflation and recruitment by the helium dilution technique and electrical impedance tomography. Intensive Care Med. 42(10), 1576–1587 (2016)

    CrossRef  Google Scholar 

  31. Hsu, C.-F., Cheng, J.-S., Lin, W.-C., Ko, Y.-F., Cheng, K.-S., Lin, S.-H., Chen, C.-W.: Electrical impedance tomography monitoring in acute respiratory distress syndrome patients with mechanical ventilation during prolonged positive end-expiratory pressure adjustments. J. Formos. Med. Assoc. 115(3), 195–202 (2016)

    CrossRef  Google Scholar 

  32. Yun, L., He, H.-W., Möller, K., Frerichs, I., Liu, D., Zhao, Z.: Assessment of lung recruitment by electrical impedance tomography and oxygenation in ARDS patients. Medicine, 95(22) (2016)

    Google Scholar 

  33. Bellani, G., Rouby, J.-J., Constantin, J.-M., Pesenti, A.: Looking closer at acute respiratory distress syndrome: the role of advanced imaging techniques. Curr. Opin. Crit. Care 23(1), 30–37 (2017)

    CrossRef  Google Scholar 

  34. Putensen, C., Wrigge, H., Zinserling, J.: Electrical impedance tomography guided ventilation therapy. Curr. Opin. Crit. Care 13(3), 344–350 (2007)

    CrossRef  Google Scholar 

  35. Vogt, B., Pulletz, S., Elke, G., Zhao, Z., Zabel, P., Weiler, N., Frerichs, I.: Spatial and temporal heterogeneity of regional lung ventilation determined by electrical impedance tomography during pulmonary function testing. J. Appl. Physiol. 113(7), 1154–1161 (2012)

    CrossRef  Google Scholar 

  36. Frerichs, I., Achtzehn, U., Pechmann, A., Pulletz, S., Schmidt, E.W., Quintel, M., Weiler, N.: High-frequency oscillatory ventilation in patients with acute exacerbation of chronic obstructive pulmonary disease. J. Crit. Care 27(2), 172–181 (2012)

    CrossRef  Google Scholar 

  37. Frerichs, I., Zhao, Z., Becher, T., Zabel, P., Weiler, N., Vogt, B.: Regional lung function determined by electrical impedance tomography during bronchodilator reversibility testing in patients with asthma. Physiol. Meas. 37(6), 698 (2016)

    CrossRef  Google Scholar 

  38. Zhang, J., Qin, L., Allen, T., Patterson, R.P.: Human CT measurements of structure/electrode position changes during respiration with electrical impedance tomography. Open Biomed. Eng. J. 7, 109 (2013)

    CrossRef  Google Scholar 

  39. Schullcke, B., Gong, B., Krueger-Ziolek, S., Moeller, K.: Reconstruction of conductivity change in lung lobes utilizing electrical impedance tomography. Curr. Dir. Biomed. Eng. 3(2), 513–516 (2017)

    CrossRef  Google Scholar 

  40. Zhang, C., Dai, M., Liu, W., Bai, X., Wu, J., Xu, C., Xia, J., Fu, F., Shi, X., Dong, X., et al.: Global and regional degree of obstruction determined by electrical impedance tomography in patients with obstructive ventilatory defect. PloS One 13(12), e0209473 (2018)

    CrossRef  Google Scholar 

  41. Zhao, Z., Fischer, R., Müller-Lisse, U., Moeller, K.: Ventilation inhomogeneity in patients with cystic fibrosis measured by electrical impedance tomography. Biomed. Eng./Biomedizinische Technik 57(SI–1 Track–L), 382–385 (2012)

    Google Scholar 

  42. Zhao, Z., Müller-Lisse, U., Frerichs, I., Fischer, R., Möller, K.: Regional airway obstruction in cystic fibrosis determined by electrical impedance tomography in comparison with high resolution Ct. Physiol. Meas. 34(11), N107 (2013)

    CrossRef  Google Scholar 

  43. Wettstein, M., Radlinger, L., Riedel, T.: Effect of different breathing aids on ventilation distribution in adults with cystic fibrosis. PLoS One 9(9), e106591 (2014)

    CrossRef  Google Scholar 

  44. Lehmann, S., Leonhardt, S., Ngo, C., Bergmann, L., Ayed, I., Schrading, S., Tenbrock, K.: Global and regional lung function in cystic fibrosis measured by electrical impedance tomography. Pediatr. Pulmonol. 51(11), 1191–1199 (2016)

    CrossRef  Google Scholar 

  45. Krueger-Ziolek, S., Schullcke, B., Zhao, Z., Gong, B., Naehrig, S., Müller-Lisse, U., Moeller, K.: Multi-layer ventilation inhomogeneity in cystic fibrosis. Respir. Physiol. Neurobiol. 233, 25–32 (2016)

    CrossRef  Google Scholar 

  46. Muller, P.A., Mueller, J.L., Mellenthin, M., Murthy, R., Capps, M., Wagner, B.D., Alsaker, M., Deterding, R., Sagel, S.D., Hoppe, J.: Evaluation of surrogate measures of pulmonary function derived from electrical impedance tomography data in children with cystic fibrosis. Physiol. Measur. 39(4), e106591 (2018)

    CrossRef  Google Scholar 

  47. Frerichs, I., Vogt, B., Wacker, J., Paradiso, R., Braun, F., Rapin, M., Chételat, O., Weiler, N.: Wearable chest electrical impedance tomography system–a validation study in healthy volunteers. In: Electrical Impedance Tomography, p. 49 (2018)

    Google Scholar 

  48. Karsten, J., Krabbe, K., Heinze, H., Dalhoff, K., Meier, T., Drömann, D.: Bedside monitoring of ventilation distribution and alveolar inflammation in community-acquired pneumonia. J. Clin. Monit. Comput. 28(4), 403–408 (2014)

    CrossRef  Google Scholar 

  49. Nebuya, S., Koike, T., Imai, H., Iwashita, Y., Brown, B.H., Soma, K.: Feasibility of using ‘lung density’ values estimated from EIT images for clinical diagnosis of lung abnormalities in mechanically ventilated ICU patients. Physiol. Meas. 36(6), 1261 (2015)

    CrossRef  Google Scholar 

  50. Mazzoni, M.B., Perri, A., Plebani, A.M., Ferrari, S., Amelio, G., Rocchi, A., Consonni, D., Milani, G.P., Fossali, E.F.: Electrical impedance tomography in children with community acquired pneumonia: preliminary data. Respir. Med. 130, 9–12 (2017)

    CrossRef  Google Scholar 

  51. Arad, M., Zlochiver, S., Davidson, T., Shoenfeld, Y., Adunsky, A., Abboud, S.: The detection of pleural effusion using a parametric EIT technique. Physiol. Meas. 30(4), 421 (2009)

    CrossRef  Google Scholar 

  52. Omer, N., Abboud, S., Arad, M.: Classifying lung congestion in congestive heart failure using electrical impedance-a 3D model. In: 2015 Computing in Cardiology Conference (CinC), pp. 369–372. IEEE (2015)

    Google Scholar 

  53. Becher, T., Bußmeyer, M., Lautenschläger, I., Schädler, D., Weiler, N., Frerichs, I.: Characteristic pattern of pleural effusion in electrical impedance tomography images of critically ill patients. Br. J. Anaesth. 120(6), 1219–1228 (2018)

    CrossRef  Google Scholar 

  54. de Castro Martins, T., Sato, A.K., de Moura, F.S., de Camargo, E.D.L.B., Silva, O.L., Santos, T.B.R., Zhao, Z., Möeller, K., Amato, M.B.P., Müeller, J.L., et al.: A review of electrical impedance tomography in lung applications: theory and algorithms for absolute images. Ann. Rev. Control 48, 442–471 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Atiqur Rahman Ahad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Tabassum, A., Ahad, M.A.R. (2021). Electrical Impedance Tomography Based Lung Disease Monitoring. In: Ahad, M.A.R., Inoue, A. (eds) Vision, Sensing and Analytics: Integrative Approaches. Intelligent Systems Reference Library, vol 207. Springer, Cham. https://doi.org/10.1007/978-3-030-75490-7_11

Download citation