Abstract
In this chapter, the tire-pavement system as one subsystem of the complex vehicle-tire-pavement system is investigated in detail. As basic framework, the finite element method (FEM) is used for both, tire and pavement simulation, to obtain a detailed representation of the dynamic system, where the special case of steady state motion of the rolling tire is considered. The finite element (FE) discretization further enables to study the tire-pavement interface in terms of transmitted stresses and friction characteristics for different tire and surface properties. For the modeling of this complex subsystem, new FE based analysis methods have been derived using the Arbitrary Lagrangian-Eulerian (ALE) framework for tire and pavement. With the help of the ALE framework, the relative motion of tire and pavement is captured in a computationally efficient way. Friction in the tire-pavement interface is numerically represented by a homogenization approach of the friction interface over several length scales. With the help of a time homogenization technique, spatially detailed long-term predictions regarding rutting of the pavement become feasible by considering different time scales of the thermo-mechanical investigation.
Keywords
- Tire
- Pavement
- Interaction
- Friction
- Simulation
- Prediction
Funded by the German Research Foundation (DFG) under grant KA 1163/30.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Abed, A., Thom, N., Neves, L.: Probabilistic prediction of asphalt pavement performance. Road Mater. Pave. Design 20, S247–S264 (2019)
Alber, S., Schuck, B., Ressel, W., Behnke, R., Canon Falla, G., Kaliske, M., Leischner, S., Wellner, F.: Modeling of surface drainage during the service life of asphalt pavements showing long-term rutting: a modular hydro-mechanical approach. Adv. Mater. Sci. Eng. 2020, 8793652 (2020)
Bayoumi, H.N., Gadala, M.S.: A complete finite element treatment for the fully coupled implicid ALE formulation. Comput. Mech. 33, 435–452 (2004)
Behnke, R., Canon Falla, G., Leischner, S., Händel, T., Wellner, F., Kaliske, M.: A continuum mechanical model for asphalt based on the particle size distribution: numerical formulation for large deformations and experimental validation. Mech. Mater. 153, 103703 (2021)
Behnke, R., Kaliske, M.: Thermo-mechanically coupled investigation of steady state rolling tires by numerical simulation and experiment. Int. J. Non-Linear Mech. 68, 101–131 (2015)
Behnke, R., Kaliske, M.: Finite element based analysis of reinforcing cords in rolling tires: influence of mechanical and thermal cord properties on tire response. Tire Sci. Technol. 46, 294–327 (2018)
Behnke, R., Kaliske, M.: Square block foundation resting on an unbounded soil layer: long-term prediction of vertical displacement using a time homogenization technique for dynamic loading. Soil Dyn. Earthquake Eng. 115, 448–471 (2018)
Behnke, R., Wollny, I., Hartung, F., Kaliske, M.: Thermo-mechanical finite element prediction of the structural long-term response of asphalt pavements subjected to periodic traffic load: tire-pavement interaction and rutting. Comput. Struct. 218, 9–31 (2019)
Benson, D.: Computational methods in Lagrangian and Eulerian hydrocodes. Comput. Methods Appl. Mech. Eng. 99, 235–394 (1992)
Berger, T., Behnke, R., Kaliske, M.: Viscoelastic linear and nonlinear analysis of steady state rolling rubber wheels: a comparison. Rubber Chem. Technol. 89, 499–525 (2016)
Chabot, A., Chupin, O., Deloffre, L., Duhamel, D.: ViscoRoute 2.0 A. Tool for the simulation of moving load effects on asphalt pavement. Road Mater. Pave. Design 11, 227–250 (2010)
De Lorenzis, L., Wriggers, P.: Computational homogenization of rubber friction on rough rigid surfaces. Comput. Mater. Sci. 77, 264–280 (2013)
Donea, J., Huerta, A., Ponthot, J., Rodriguez-Ferran, A.: Arbitrary Lagrangian-Eulerian methods. In: Stein, E., de Borst, R., Hughes, T. (eds.) Encyclopedia of Computational Mechanics (Vol. 1: Fundamentals), pp. 414–437. Wiley, Chichester, UK (2004)
Falk, K., Lang, R., Kaliske, M.: Multiscale simulation to determine rubber friction on asphalt surfaces. Tire Sci. Technol. 44, 226–247 (2016)
Guennouni, T.: Sur une méthode de calcul de structures soumises à des chargements cycliques: L’homogénéisation en temps. Modélisation Mathématique et Analyse Numérique 22, 417–455 (1988)
Guo, M., Zhou, X.: Tire-pavement contact stress characteristics and critical slip ratio at multiple working conditions. Adv. Mater. Sci. Eng. 2019, 5178516 (2019)
Hartung, F., Kienle, R., Götz, T., Winkler, T., Ressel, W., Eckstein, L., Kaliske, M.: Numerical determination of hysteresis friction on different length scales and comparison to experiments. Tribol. Int. 127, 165–176 (2018)
Hernandez, J., Al-Qadi, I.: Tire-pavement interaction modelling: hyperelastic tire and elastic pavement. Road Mater. Pave. Design 18, 1067–1083 (2017)
Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, Chichester, UK (2000)
Kaliske, M., Wollny, I., Behnke, R., Zopf, C.: Holistic analysis of the coupled vehicle-tire-pavement system for the design of durable pavements. Tire Sci. Technol. 2015, 86–116 (43)
Kerali, H., Lawrance, A., Awad, K.: Data analysis procedures for long-term pavement performance prediction. Transport. Res. Record 1524, 152–159 (1996)
Kim, S.M., Darabi, M., Little, D., Abu Al-Rub, R.: Effect of the realistic tire contact pressure on the rutting performance of asphaltic concrete pavements. KSCE J. Civ. Eng. 22, 2138–2146 (2018)
Le Gal, A., Klüppel, M.: Investigation and modelling of rubber stationary friction on rough surfaces. J. Phys. Conden. Matt. 20, 015007 (2007)
Lian-sheng, G., Han-cheng, D., Jia-qi, C.: Research on predicting the rutting of asphalt pavement based on a simplified Burgers creep model. Math. Prob. Eng. 2017, 3459704 (2017)
Liu, Y., Su, P., Li, M., You, Z., Zhao, M.: Review on evolution and evaluation of asphalt pavement structures and materials. J. Traf. Transport. Eng. 7, 573–599 (2020)
Makendran, C., Murugasan, R., Velmurugan, S.: Performance prediction modelling for flexible pavement on low volume roads using multiple linear regression analysis. J. Appl. Math. 2015, 192485 (2015)
Nackenhorst, U.: The ALE-formulation of bodies in rolling contact—theoretical foundations and finite element approach. Comput. Methods Appl. Mech. Eng. 193, 4299–4322 (2004)
Netzker, C., Dal, H., Kaliske, M.: An endochronic plasticity formulation for filled rubber. Int. J. Solids Struct. 47, 2371–2379 (2010)
Norouzi, A., Kim, D., Kim, Y.: Numerical evaluation of pavement design parameters for the fatigue cracking and rutting performance of asphalt pavements. Mater. Struct. 49, 3619–3634 (2016)
Oeser, M.: Numerische Simulation des nichtlinearen Verhaltens flexibler mehrschichtiger Verkehrswegebefestigungen. Ph.D. thesis, Technische Universität Dresden (2004)
Persson, B.: Contact mechanics for randomly rough surfaces. Surf. Sci. Rep. 61, 201–227 (2006)
Raous, M., Cangémi, L., Cocu, M.: A consistent model coupling adhesion, friction, and unilateral contact. Comput. Methods Appl. Mech. Eng. 177, 383–399 (1999)
Reddy, J., Gartling, D.: The Finite Element Method in Heat Transfer and Fluid Dynamics. CRC Press, Boca Raton (2000)
Serafinska, A., Hassoun, N., Kaliske, M.: Numerical optimization of wear performance—utilizing a metamodel based friction law. Comput. Struct. 165, 10–23 (2016)
Srirangam, S., Anupam, K., Scarpas, A., Kasbergen, C.: Development of a thermomechanical tyre-pavement interaction model. Int. J. Pave. Eng. 16, 721–729 (2015)
Wagner, P., Wriggers, P., Klapproth, C., Prange, C., Wies, B.: Multiscale FEM approach for hysteresis friction of rubber on rough surfaces. Comput. Methods Appl. Mech. Eng. 296, 150–168 (2015)
Wagner, P., Wriggers, P., Veltmaat, L., Clasen, H., Prange, C., Wies, B.: Numerical multiscale modelling and experimental validation of low speed rubber friction on rough road surfaces including hysteretic and adhesive effects. Tribol. Int. 111, 243–253 (2017)
Wang, H., Al-Qadi, I., Stanciulescu, I.: Simulation of tyre-pavement interaction for predicting contact stresses at static and various rolling conditions. Int. J. Pave. Eng. 13, 310–321 (2012)
Wang, Z., Guo, N., Wang, S., Xu, Y.: Prediction of highway asphalt pavement performance based on Markov chain and artificial neural network approach. J. Supercomput. 77, 1354–1376 (2021)
Wellner, F., Hristov, B.: Numerically supported experimental determination of the behavior of the interlayer bond. Transport. Res. Record J. Transport. Res. Board 2506, 116–125 (2015)
Wollny, I.: ALE formulation of inelastic, temperature-dependent and fluid-infiltrated layered pavement structures at loading by steady state rolling tires. Ph.D. thesis, Institute for Structural Analysis, TU Dresden (2018)
Wollny, I., Behnke, R., Villaret, K., Kaliske, M.: Numerical modelling of tire-pavement interaction phenomena: coupled structural investigations. Road Mater. Pave. Design 17, 563–578 (2016)
Wollny, I., Hartung, F., Kaliske, M.: Numerical modeling of inelastic structures at loading of steady state rolling—thermo-mechanical asphalt pavement computation. Comput. Mech. 57, 867–886 (2016)
Wollny, I., Hartung, F., Kaliske, M., Canon Falla, G., Wellner, F.: Numerical investigation of inelastic and temperature dependent layered asphalt pavements at loading by rolling tyres. Int. J. Pave. Eng. 22, 97–117 (2021)
Wollny, I., Kaliske, M.: Numerical simulation of pavement structures with inelastic material behaviour under rolling tyres based on an arbitrary Lagrangian Eulerian (ALE) formulation. Road Mater. Pave. Design 14, 71–89 (2013)
Wriggers, P.: Computational Contact Mechanics. Springer, Berlin (2006)
Wriggers, P., Reinelt, J.: Multi-scale approach for frictional contact of elastomers on rough rigid surfaces. Comput. Methods Appl. Mech. Eng. 198, 1996–2008 (2009)
Yong-hong, Y., Yuan-hao, J., Xuan-cang, W.: Pavement performance prediction methods and maintenance cost based on the structure load. Procedia Eng. 137, 41–48 (2016)
Ziefle, M., Nackenhorst, U.: Numerical techniques for rolling rubber wheels: treatment of inelastic material properties and frictional contact. Comput. Mech. 42, 337–356 (2008)
Zopf, C., Garcia, M., Kaliske, M.: A continuum mechanical approach to model asphalt. Int. J. Pave. Eng. 16, 105–124 (2015)
Zreid, I., Fleischhauer, R., Kaliske, M.: A thermomechanically coupled viscoelastic cohesive zone model at large deformation. Int. J. Solids Struct. 50, 4279–4291 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Kaliske, M., Behnke, R., Hartung, F., Wollny, I. (2021). Multi-physical and Multi-scale Theoretical-Numerical Modeling of Tire-Pavement Interaction. In: Kaliske, M., Oeser, M., Eckstein, L., Leischner, S., Ressel, W., Wellner, F. (eds) Coupled System Pavement - Tire - Vehicle. Lecture Notes in Applied and Computational Mechanics, vol 96. Springer, Cham. https://doi.org/10.1007/978-3-030-75486-0_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-75486-0_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-75485-3
Online ISBN: 978-3-030-75486-0
eBook Packages: EngineeringEngineering (R0)