Skip to main content

Multi-physical and Multi-scale Theoretical-Numerical Modeling of Tire-Pavement Interaction

  • Chapter
  • First Online:
Coupled System Pavement - Tire - Vehicle

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 96))

  • 746 Accesses

Abstract

In this chapter, the tire-pavement system as one subsystem of the complex vehicle-tire-pavement system is investigated in detail. As basic framework, the finite element method (FEM) is used for both, tire and pavement simulation, to obtain a detailed representation of the dynamic system, where the special case of steady state motion of the rolling tire is considered. The finite element (FE) discretization further enables to study the tire-pavement interface in terms of transmitted stresses and friction characteristics for different tire and surface properties. For the modeling of this complex subsystem, new FE based analysis methods have been derived using the Arbitrary Lagrangian-Eulerian (ALE) framework for tire and pavement. With the help of the ALE framework, the relative motion of tire and pavement is captured in a computationally efficient way. Friction in the tire-pavement interface is numerically represented by a homogenization approach of the friction interface over several length scales. With the help of a time homogenization technique, spatially detailed long-term predictions regarding rutting of the pavement become feasible by considering different time scales of the thermo-mechanical investigation.

Funded by the German Research Foundation (DFG) under grant KA 1163/30.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abed, A., Thom, N., Neves, L.: Probabilistic prediction of asphalt pavement performance. Road Mater. Pave. Design 20, S247–S264 (2019)

    Google Scholar 

  2. Alber, S., Schuck, B., Ressel, W., Behnke, R., Canon Falla, G., Kaliske, M., Leischner, S., Wellner, F.: Modeling of surface drainage during the service life of asphalt pavements showing long-term rutting: a modular hydro-mechanical approach. Adv. Mater. Sci. Eng. 2020, 8793652 (2020)

    Google Scholar 

  3. Bayoumi, H.N., Gadala, M.S.: A complete finite element treatment for the fully coupled implicid ALE formulation. Comput. Mech. 33, 435–452 (2004)

    Google Scholar 

  4. Behnke, R., Canon Falla, G., Leischner, S., Händel, T., Wellner, F., Kaliske, M.: A continuum mechanical model for asphalt based on the particle size distribution: numerical formulation for large deformations and experimental validation. Mech. Mater. 153, 103703 (2021)

    Google Scholar 

  5. Behnke, R., Kaliske, M.: Thermo-mechanically coupled investigation of steady state rolling tires by numerical simulation and experiment. Int. J. Non-Linear Mech. 68, 101–131 (2015)

    Google Scholar 

  6. Behnke, R., Kaliske, M.: Finite element based analysis of reinforcing cords in rolling tires: influence of mechanical and thermal cord properties on tire response. Tire Sci. Technol. 46, 294–327 (2018)

    Google Scholar 

  7. Behnke, R., Kaliske, M.: Square block foundation resting on an unbounded soil layer: long-term prediction of vertical displacement using a time homogenization technique for dynamic loading. Soil Dyn. Earthquake Eng. 115, 448–471 (2018)

    Google Scholar 

  8. Behnke, R., Wollny, I., Hartung, F., Kaliske, M.: Thermo-mechanical finite element prediction of the structural long-term response of asphalt pavements subjected to periodic traffic load: tire-pavement interaction and rutting. Comput. Struct. 218, 9–31 (2019)

    Google Scholar 

  9. Benson, D.: Computational methods in Lagrangian and Eulerian hydrocodes. Comput. Methods Appl. Mech. Eng. 99, 235–394 (1992)

    Google Scholar 

  10. Berger, T., Behnke, R., Kaliske, M.: Viscoelastic linear and nonlinear analysis of steady state rolling rubber wheels: a comparison. Rubber Chem. Technol. 89, 499–525 (2016)

    Google Scholar 

  11. Chabot, A., Chupin, O., Deloffre, L., Duhamel, D.: ViscoRoute 2.0 A. Tool for the simulation of moving load effects on asphalt pavement. Road Mater. Pave. Design 11, 227–250 (2010)

    Google Scholar 

  12. De Lorenzis, L., Wriggers, P.: Computational homogenization of rubber friction on rough rigid surfaces. Comput. Mater. Sci. 77, 264–280 (2013)

    Google Scholar 

  13. Donea, J., Huerta, A., Ponthot, J., Rodriguez-Ferran, A.: Arbitrary Lagrangian-Eulerian methods. In: Stein, E., de Borst, R., Hughes, T. (eds.) Encyclopedia of Computational Mechanics (Vol. 1: Fundamentals), pp. 414–437. Wiley, Chichester, UK (2004)

    Google Scholar 

  14. Falk, K., Lang, R., Kaliske, M.: Multiscale simulation to determine rubber friction on asphalt surfaces. Tire Sci. Technol. 44, 226–247 (2016)

    Google Scholar 

  15. Guennouni, T.: Sur une méthode de calcul de structures soumises à des chargements cycliques: L’homogénéisation en temps. Modélisation Mathématique et Analyse Numérique 22, 417–455 (1988)

    Google Scholar 

  16. Guo, M., Zhou, X.: Tire-pavement contact stress characteristics and critical slip ratio at multiple working conditions. Adv. Mater. Sci. Eng. 2019, 5178516 (2019)

    Google Scholar 

  17. Hartung, F., Kienle, R., Götz, T., Winkler, T., Ressel, W., Eckstein, L., Kaliske, M.: Numerical determination of hysteresis friction on different length scales and comparison to experiments. Tribol. Int. 127, 165–176 (2018)

    Google Scholar 

  18. Hernandez, J., Al-Qadi, I.: Tire-pavement interaction modelling: hyperelastic tire and elastic pavement. Road Mater. Pave. Design 18, 1067–1083 (2017)

    Google Scholar 

  19. Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, Chichester, UK (2000)

    Google Scholar 

  20. Kaliske, M., Wollny, I., Behnke, R., Zopf, C.: Holistic analysis of the coupled vehicle-tire-pavement system for the design of durable pavements. Tire Sci. Technol. 2015, 86–116 (43)

    Google Scholar 

  21. Kerali, H., Lawrance, A., Awad, K.: Data analysis procedures for long-term pavement performance prediction. Transport. Res. Record 1524, 152–159 (1996)

    Google Scholar 

  22. Kim, S.M., Darabi, M., Little, D., Abu Al-Rub, R.: Effect of the realistic tire contact pressure on the rutting performance of asphaltic concrete pavements. KSCE J. Civ. Eng. 22, 2138–2146 (2018)

    Google Scholar 

  23. Le Gal, A., Klüppel, M.: Investigation and modelling of rubber stationary friction on rough surfaces. J. Phys. Conden. Matt. 20, 015007 (2007)

    Google Scholar 

  24. Lian-sheng, G., Han-cheng, D., Jia-qi, C.: Research on predicting the rutting of asphalt pavement based on a simplified Burgers creep model. Math. Prob. Eng. 2017, 3459704 (2017)

    Google Scholar 

  25. Liu, Y., Su, P., Li, M., You, Z., Zhao, M.: Review on evolution and evaluation of asphalt pavement structures and materials. J. Traf. Transport. Eng. 7, 573–599 (2020)

    Google Scholar 

  26. Makendran, C., Murugasan, R., Velmurugan, S.: Performance prediction modelling for flexible pavement on low volume roads using multiple linear regression analysis. J. Appl. Math. 2015, 192485 (2015)

    Google Scholar 

  27. Nackenhorst, U.: The ALE-formulation of bodies in rolling contact—theoretical foundations and finite element approach. Comput. Methods Appl. Mech. Eng. 193, 4299–4322 (2004)

    Google Scholar 

  28. Netzker, C., Dal, H., Kaliske, M.: An endochronic plasticity formulation for filled rubber. Int. J. Solids Struct. 47, 2371–2379 (2010)

    Google Scholar 

  29. Norouzi, A., Kim, D., Kim, Y.: Numerical evaluation of pavement design parameters for the fatigue cracking and rutting performance of asphalt pavements. Mater. Struct. 49, 3619–3634 (2016)

    Google Scholar 

  30. Oeser, M.: Numerische Simulation des nichtlinearen Verhaltens flexibler mehrschichtiger Verkehrswegebefestigungen. Ph.D. thesis, Technische Universität Dresden (2004)

    Google Scholar 

  31. Persson, B.: Contact mechanics for randomly rough surfaces. Surf. Sci. Rep. 61, 201–227 (2006)

    Google Scholar 

  32. Raous, M., Cangémi, L., Cocu, M.: A consistent model coupling adhesion, friction, and unilateral contact. Comput. Methods Appl. Mech. Eng. 177, 383–399 (1999)

    Google Scholar 

  33. Reddy, J., Gartling, D.: The Finite Element Method in Heat Transfer and Fluid Dynamics. CRC Press, Boca Raton (2000)

    Google Scholar 

  34. Serafinska, A., Hassoun, N., Kaliske, M.: Numerical optimization of wear performance—utilizing a metamodel based friction law. Comput. Struct. 165, 10–23 (2016)

    Google Scholar 

  35. Srirangam, S., Anupam, K., Scarpas, A., Kasbergen, C.: Development of a thermomechanical tyre-pavement interaction model. Int. J. Pave. Eng. 16, 721–729 (2015)

    Google Scholar 

  36. Wagner, P., Wriggers, P., Klapproth, C., Prange, C., Wies, B.: Multiscale FEM approach for hysteresis friction of rubber on rough surfaces. Comput. Methods Appl. Mech. Eng. 296, 150–168 (2015)

    Google Scholar 

  37. Wagner, P., Wriggers, P., Veltmaat, L., Clasen, H., Prange, C., Wies, B.: Numerical multiscale modelling and experimental validation of low speed rubber friction on rough road surfaces including hysteretic and adhesive effects. Tribol. Int. 111, 243–253 (2017)

    Google Scholar 

  38. Wang, H., Al-Qadi, I., Stanciulescu, I.: Simulation of tyre-pavement interaction for predicting contact stresses at static and various rolling conditions. Int. J. Pave. Eng. 13, 310–321 (2012)

    Google Scholar 

  39. Wang, Z., Guo, N., Wang, S., Xu, Y.: Prediction of highway asphalt pavement performance based on Markov chain and artificial neural network approach. J. Supercomput. 77, 1354–1376 (2021)

    Google Scholar 

  40. Wellner, F., Hristov, B.: Numerically supported experimental determination of the behavior of the interlayer bond. Transport. Res. Record J. Transport. Res. Board 2506, 116–125 (2015)

    Google Scholar 

  41. Wollny, I.: ALE formulation of inelastic, temperature-dependent and fluid-infiltrated layered pavement structures at loading by steady state rolling tires. Ph.D. thesis, Institute for Structural Analysis, TU Dresden (2018)

    Google Scholar 

  42. Wollny, I., Behnke, R., Villaret, K., Kaliske, M.: Numerical modelling of tire-pavement interaction phenomena: coupled structural investigations. Road Mater. Pave. Design 17, 563–578 (2016)

    Google Scholar 

  43. Wollny, I., Hartung, F., Kaliske, M.: Numerical modeling of inelastic structures at loading of steady state rolling—thermo-mechanical asphalt pavement computation. Comput. Mech. 57, 867–886 (2016)

    Google Scholar 

  44. Wollny, I., Hartung, F., Kaliske, M., Canon Falla, G., Wellner, F.: Numerical investigation of inelastic and temperature dependent layered asphalt pavements at loading by rolling tyres. Int. J. Pave. Eng. 22, 97–117 (2021)

    Google Scholar 

  45. Wollny, I., Kaliske, M.: Numerical simulation of pavement structures with inelastic material behaviour under rolling tyres based on an arbitrary Lagrangian Eulerian (ALE) formulation. Road Mater. Pave. Design 14, 71–89 (2013)

    Google Scholar 

  46. Wriggers, P.: Computational Contact Mechanics. Springer, Berlin (2006)

    Google Scholar 

  47. Wriggers, P., Reinelt, J.: Multi-scale approach for frictional contact of elastomers on rough rigid surfaces. Comput. Methods Appl. Mech. Eng. 198, 1996–2008 (2009)

    Google Scholar 

  48. Yong-hong, Y., Yuan-hao, J., Xuan-cang, W.: Pavement performance prediction methods and maintenance cost based on the structure load. Procedia Eng. 137, 41–48 (2016)

    Google Scholar 

  49. Ziefle, M., Nackenhorst, U.: Numerical techniques for rolling rubber wheels: treatment of inelastic material properties and frictional contact. Comput. Mech. 42, 337–356 (2008)

    Google Scholar 

  50. Zopf, C., Garcia, M., Kaliske, M.: A continuum mechanical approach to model asphalt. Int. J. Pave. Eng. 16, 105–124 (2015)

    Google Scholar 

  51. Zreid, I., Fleischhauer, R., Kaliske, M.: A thermomechanically coupled viscoelastic cohesive zone model at large deformation. Int. J. Solids Struct. 50, 4279–4291 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kaliske .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaliske, M., Behnke, R., Hartung, F., Wollny, I. (2021). Multi-physical and Multi-scale Theoretical-Numerical Modeling of Tire-Pavement Interaction. In: Kaliske, M., Oeser, M., Eckstein, L., Leischner, S., Ressel, W., Wellner, F. (eds) Coupled System Pavement - Tire - Vehicle. Lecture Notes in Applied and Computational Mechanics, vol 96. Springer, Cham. https://doi.org/10.1007/978-3-030-75486-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75486-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75485-3

  • Online ISBN: 978-3-030-75486-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics