Skip to main content

A New Approach for the Production of Burr-Free Sheet Metal Components Having Significantly Increased Residual Formability

  • Conference paper
  • First Online:
Forming the Future

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Shear cutting induces high strains and work hardening into the shear-affected zone, thus reducing the formability of the sheet metal material during subsequent forming operations. A common method for increasing the residual formability of shear-cut component edges is to shave the surfaces. The shaving process allows for the removal of highly hardened areas from a pre-cut contour, resulting in a comparatively high residual formability of the cutting surface. However, as known from conventional cutting, a burr remains on the shear surface when shaving. Such burr formation is undesirable and therefore usually has to be removed afterward. For this reason, a new process has been developed which combines two processes within the same stroke of punch, the counter-cutting, and shaving process, enabling the production of burr-free shear surfaces showing a high portion of clean-cut proportions and significantly 1.6 times higher hole expansion ratios than conventional cutting surfaces. The present paper deals with numerical and experimental investigations carried out in the course of the process development with the high-strength sheet metal material DP600.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gall M, Liewald M (2013) Experimental investigation of the influence of shear cutting parameters on the edge crack sensitivity of dual phase steels. IDDRG, Zurich, pp 219–224

    Google Scholar 

  2. Wu X, Bahmanpour H, Schmid K (2012) Characterization of mechanically sheard edges of dual phase steels, Elsevier Verlag

    Google Scholar 

  3. Matsuno T, Sato K, Okamoto R, Mizumura M, Suehiro M (2016) Synergy effect of shear angle and anisotropic material ductility on hole-expansion ratio of high-strength steels. J Mater Process Technol

    Google Scholar 

  4. Kühlewein R (2003) Einfluss der Prozessparameter auf das Nachscheiden schergeschnittener Konturen, Dissertation, TU München

    Google Scholar 

  5. Gläsner T, Volk W, Hoffmann H, Golle R (2015) Evaluation eines Verfahrens zur Bestimmung der Kantenrisssensitivität von hochfesten Stählen, utfscience, Verlag Meisenbach

    Google Scholar 

  6. Liebing H, Lange K (1978) Erzeugung gratfreier Schnittflächen durch Aufteilen des Schneidvorgangs (Konterschneiden), Dissertation, Universität Stuttgart

    Google Scholar 

  7. Sachnik P, Volk W (2017) Methodik für gratfreie Schnittflächen beim Scherschneiden, Disseration, TU München

    Google Scholar 

  8. Lange K (1990) Umformtechnik – Handbuch für Industrie und Wissenschaft, Band 3: Blechbearbeitung, 2. völlig neu bearbeitete und erweiterte Auflage; Springer Verlag

    Google Scholar 

  9. Erlenmeier W (2010) Stanzwerkzeug und Verfahren zum mehrstufigen Stanzen. Europa-Patent EP 2198988:A1

    Google Scholar 

  10. Haack J (1993) Patentschrift: Process for producing burr-free workpieces by blanking, in particular in a counterblanking tool, US Patent No 5247862 A

    Google Scholar 

  11. Haack J (1994) Method for manufacture of workpieces by punching, in particular in a precision counter punching tool. Europa Patent No: EP 0418779:B1

    Google Scholar 

  12. Kappes J (2010) Schnittgratfreies Scherschneiden mittels Konterschneiden, utfscience, Universität Stuttgart

    Google Scholar 

  13. Wörz C, Gall M (2013) Grat- und flitterfreie Aluminiumbleche aus dem Stanzautomaten, MaschinenMarkt

    Google Scholar 

  14. Hoffmann H, Neugebauer R, Spur G (2012) Handbuch Umformen. Carl Hanser Verlag, München

    Book  Google Scholar 

  15. Guidi A (1965) Nachschneiden und Feinschneiden. Carl Hanser Verlag, München

    Google Scholar 

  16. Romanowski WP (1965) Handbuch der Stanzereitechnik. VEB-Verlag, Berlin

    Google Scholar 

  17. Weckener H (1975) Werkzeugstähle für Schnittwerkzeuge unter Berücksichtigung der verschiedenen Schneidverfahren, Technischer Bericht

    Google Scholar 

  18. Gläsner T, Sunderkötter C, Hoffmann M, Volk W, Hoffmann H, Golle R (2013) Zweistufiges Scherschneiden reduziert die Kantenrissempfindlichkeit, Meisenbach Verlag GmbH

    Google Scholar 

  19. Mackensen A (2013) Presswerkorientierte Analyse der Umform- und Scherschneideigenschaften von Mehrphasenstählen, Dissertation, TU München

    Google Scholar 

  20. Nothaft K (2013) Scherschneiden höchstfester Blechwerkstoffe im offenen Schnitt, Dissertation, TU München

    Google Scholar 

  21. Held C, Schleich R, Sindel M, Liewald M (2009) Untersuchung zum Einfluss der Verfestigung von schergeschnittenen Kanten auf folgende Umformpro-zesse, UTFscience.de

    Google Scholar 

  22. Gläsner T, Sunderkötter C, Rommel S, Volk W (2015) Evaluation eines Verfahrens zur Bestimmung der Kantenrisssensitivität von hochfesten Stählen, umformtechnik.net, Meisenbach Verlag GmbH

    Google Scholar 

  23. ISO 16630:2009(E), Metallic materials – Sheet and strip – Hole expanding test, 2009

    Google Scholar 

  24. Sadagopan S, Urban D (2003) Formability Characterization of a New Generation of High-Strength Steels, AISI/DOE Technology Roadmap Program, Final Report, American Iron and Steel Institute

    Google Scholar 

  25. Schneider M, Eggers U (2011) Investigation on punched edge formability, IDDRG 2011, Salzgitter

    Google Scholar 

  26. Atzema E et al (2012) A European round robin test for the hole expansion test according to ISO 16630

    Google Scholar 

  27. Senn S, Liewald M (2019) Numerical investigation on a new process of combined counter- trimming with regard to improvement of the residual formability of burr-free shear-cut edges, NUMIFORM 2019. Portsmouth, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Senn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Senn, S., Liewald, M. (2021). A New Approach for the Production of Burr-Free Sheet Metal Components Having Significantly Increased Residual Formability. In: Daehn, G., Cao, J., Kinsey, B., Tekkaya, E., Vivek, A., Yoshida, Y. (eds) Forming the Future. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-75381-8_232

Download citation

Publish with us

Policies and ethics