Abstract
Several recent proposals of efficient public-key encryption are based on variants of the polynomial learning with errors problem (PLWE\(^f\)) in which the underlying polynomial ring \(\mathbb {Z}_q[x]/f\) is replaced with the (related) modular integer ring \(\mathbb {Z}_{f(q)}\); the corresponding problem is known as Integer Polynomial Learning with Errors (I-PLWE\(^f\)). Cryptosystems based on I-PLWE\(^f\) and its variants can exploit optimised big-integer arithmetic to achieve good practical performance, as exhibited by the ThreeBears cryptosystem. Unfortunately, the average-case hardness of I-PLWE\(^f\) and its relation to more established lattice problems have to date remained unclear.
We describe the first polynomial-time average-case reductions for the search variant of I-PLWE\(^f\), proving its computational equivalence with the search variant of its counterpart problem PLWE\(^f\). Our reductions apply to a large class of defining polynomials f. To obtain our results, we employ a careful adaptation of Rényi divergence analysis techniques to bound the impact of the integer ring arithmetic carries on the error distributions. As an application, we present a deterministic public-key cryptosystem over integer rings. Our cryptosystem, which resembles ThreeBears, enjoys one-way (OW-CPA) security provably based on the search variant of I-PLWE\(^f\).
This is a preview of subscription content, access via your institution.
Buying options
Notes
- 1.
As commonly done, we also impose irreducibility of f in the problem definitions, to avoid weaknesses such as those pointed out in [BCF20].
References
Alkim, E., et al.: Frodo: Candidate to NIS (2017)
Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_35
Albrecht, M.R., Deo, A.: Large modulus ring-LWE \(\ge \) module-LWE. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8
Aggarwal, D., Joux, A., Prakash, A., Santha, M.: A new public-key cryptosystem via Mersenne numbers. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 459–482. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_16
Budroni, A., Chetioui, B., Franch, E.: Attacks on integer-RLWE. IACR Cryptol. ePrint Arch. 2020, 1007 (2020)
Bootland, C., Castryck, W., Szepieniec, A., Vercauteren, F.: A framework for cryptographic problems from linear algebra. J. Math. Cryptol. 14(1), 202–217 (2020)
Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_1
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: ITCS 2012 (2012)
Bindel, N., Hamburg, M., Hövelmanns, K., Hülsing, A., Persichetti, E.: Tighter proofs of CCA security in the quantum random oracle model. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 61–90. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_3
Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: STOC 2013 (2013)
Bai, S., Lepoint, T., Roux-Langlois, A., Sakzad, A., Stehlé, D., Steinfeld, R.: Improved security proofs in lattice-based cryptography: using the Rényi divergence rather than the statistical distance. J. Cryptol. 31(2), 610–640 (2018)
Bernstein, D.J., Persichetti, E.: Towards KEM unification. IACR Cryptol. ePrint Arch. 2018, 526 (2018)
Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_42
Gentry, C.: Key recovery and message attacks on NTRU-composite. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 182–194. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_12
Gu, C.: Integer version of ring-LWE and its applications. IACR Cryptol. ePrint Arch. 2017, 641 (2017)
Gu, C.: Integer version of ring-LWE and its applications. In: Meng, W., Furnell, S. (eds.) SocialSec 2019. CCIS, vol. 1095, pp. 110–122. Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-0758-8_9
Hamburg, M.: Three bears: Candidate to NIS (2017)
Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_12
Kuchta, V., Sakzad, A., Stehlé, D., Steinfeld, R., Sun, S.-F.: Measure-rewind-measure: tighter quantum random oracle model proofs for one-way to hiding and CCA security. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 703–728. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_24
Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_13
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1
Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices. Des. Codes Crypt. 75(3), 565–599 (2014). https://doi.org/10.1007/s10623-014-9938-4
Langlois, A., Stehlé, D., Steinfeld, R.: GGHLite: more efficient multilinear maps from ideal lattices. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 239–256. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_14
NIST: Post-Quantum Cryptography Project. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of ring-LWE for any ring and modulus. In: STOC 2017 (2017)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6), 34 (2009)
Rosca, M., Stehlé, D., Wallet, A.: On the ring-LWE and polynomial-LWE problems. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 146–173. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_6
Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_36
Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism in the quantum random oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 520–551. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_17
Szepieniec, A.: Ramstake: Candidate to NIS (2017)
Acknowledgments
This work was supported in part by European Union Horizon 2020 Research and Innovation Program Grant 780701, Australian Research Council Discovery Project Grant DP180102199, and by BPI-France in the context of the national project RISQ (P141580).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 International Association for Cryptologic Research
About this paper
Cite this paper
Devevey, J., Sakzad, A., Stehlé, D., Steinfeld, R. (2021). On the Integer Polynomial Learning with Errors Problem. In: Garay, J.A. (eds) Public-Key Cryptography – PKC 2021. PKC 2021. Lecture Notes in Computer Science(), vol 12710. Springer, Cham. https://doi.org/10.1007/978-3-030-75245-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-75245-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-75244-6
Online ISBN: 978-3-030-75245-3
eBook Packages: Computer ScienceComputer Science (R0)
-
Published in cooperation with
https://iacr.org/