Skip to main content

The Multi-budget Maximum Weighted Coverage Problem

  • Conference paper
  • First Online:
Book cover Algorithms and Complexity (CIAC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12701))

Included in the following conference series:

  • 555 Accesses

Abstract

In this paper we consider the multi-budget maximum weighted coverage problem, a generalization of the classical maximum coverage problem, where we are given k budgets, a set X of elements, and a set \(\mathcal {S}\) of bins where any \(S \in \mathcal {S}\) is a subset of elements of X. Each bin S has its own cost, and each element its own weight. An outcome is a vector \(O=(O_1, \dots , O_k)\) where each budget \(b_i\), for \(i=1,\dots , k\), can be used to buy a subset of bins \(O_i \subseteq \mathcal {S}\) of overall cost at most \(b_i\). The objective is to maximize the total weight which is defined as the sum of the weights of the elements bought with the budgets.

We consider the classical combinatorial optimization problem of computing an outcome which maximizes the total weight and provide a \(\left( 1-\frac{1}{\sqrt{e}}\right) \)-approximation algorithm for the case when the maximum cost of a bin is upper-bounded by the minimum budget, i.e. the case in which each budget can be used to buy any bin. Moreover, we give a randomized Monte-Carlo algorithm for the general case that runs in polynomial time, satisfies the budget constraints in expectation, and guarantees an expected \(1-\frac{1}{e}\) approximation factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To see this, observe that function \(1- e^{-p }\) is concave for \(p>0\) and it is equal to 0 when \(p=0\) and to \(1- e^{-1}\) when \(p=1\).

References

  1. Buchbinder, N., Feldman, M., Naor, J., Schwartz, R.: A tight linear time (1/2)-approximation for unconstrained submodular maximization. In: Proceedings of FOCS, pp. 649–658 (2012). https://doi.org/10.1109/FOCS.2012.73

  2. Călinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766 (2011). https://doi.org/10.1137/080733991

    Article  MathSciNet  MATH  Google Scholar 

  3. Caragiannis, I., Monaco, G.: A 6/5-approximation algorithm for the maximum 3-cover problem. J. Comb. Optim. 25(1), 60–77 (2013). https://doi.org/10.1007/s10878-011-9417-z

    Article  MathSciNet  MATH  Google Scholar 

  4. Cellinese, F., D’Angelo, G., Monaco, G., Velaj, Y.: Generalized budgeted submodular set function maximization. In: Proceedings of MFCS. LIPIcs, vol. 117, pp. 31:1–31:14 (2018). https://doi.org/10.4230/LIPIcs.MFCS.2018.31

  5. Chakrabarty, D., Goel, G.: On the approximability of budgeted allocations and improved lower bounds for submodular welfare maximization and gap. In: Proceedings of FOCS, pp. 687–696 (2008). https://doi.org/10.1137/080735503

  6. Chekuri, C., Kumar, A.: Maximum coverage problem with group budget constraints and applications. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) APPROX/RANDOM-2004. LNCS, vol. 3122, pp. 72–83. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27821-4_7

  7. Chekuri, C., Vondrák, J., Zenklusen, R.: Submodular function maximization via the multilinear relaxation and contention resolution schemes. SIAM J. Comput. 43(6), 1831–1879 (2014)

    Article  MathSciNet  Google Scholar 

  8. Cohen, R., Katzir, L.: The generalized maximum coverage problem. Inf. Process. Lett. 108(1), 15–22 (2008). https://doi.org/10.1016/j.ipl.2008.03.017

    Article  MathSciNet  MATH  Google Scholar 

  9. Farbstein, B., Levin, A.: Maximum coverage problem with group budget constraints. J. Comb. Optim. 34(3), 725–735 (2017). https://doi.org/10.1007/s10878-016-0102-0

    Article  MathSciNet  MATH  Google Scholar 

  10. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652 (1998). https://doi.org/10.1145/237814.237977

  11. Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. In: Proceedings of FOCS, pp. 461–471 (2007). https://doi.org/10.1137/090779346

  12. Filmus, Y., Ward, J.: Monotone submodular maximization over a matroid via non-oblivious local search. SIAM J. Comput. 43(2), 514–542 (2014). https://doi.org/10.1137/130920277

    Article  MathSciNet  MATH  Google Scholar 

  13. Gairing, M.: Covering games: approximation through non-cooperation. In: Proceedings of WINE, pp. 184–195 (2009). https://doi.org/10.1007/978-3-642-10841-9_18

  14. Goel, G., Karande, C., Tripathi, P., Wang, L.: Approximability of combinatorial problems with multi-agent submodular cost functions. In: Proceedings of FOCS, pp. 755–764 (2009). https://doi.org/10.1109/FOCS.2009.81

  15. Goel, G., Tripathi, P., Wang, L.: Combinatorial problems with discounted price functions in multi-agent systems. In: Proceedings of the FSTTCS, pp. 436–446 (2010). https://doi.org/10.4230/LIPIcs.FSTTCS.2010.436

  16. Hochbaum, D.: Approximation Algorithms for NP-Hard Problems. PWS Publishing Company, Boston (1997). https://doi.org/10.1145/261342.571216

  17. Iwata, S., Nagano, K.: Submodular function minimization under covering constraints. In: Proceedings of FOCS, pp. 671–680 (2009). https://doi.org/10.1109/FOCS.2009.31

  18. Iyer, R.K., Bilmes, J.A.: Submodular optimization with submodular cover and submodular knapsack constraints. In: Proceedings of NIPS, pp. 2436–2444 (2013). https://doi.org/10.1145/1374376.1374389

  19. Khuller, S., Moss, A., Naor, J.S.: The budgeted maximum coverage problem. Inf. Process. Lett. 70(1), 39–45 (1999). https://doi.org/10.1016/S0020-0190(99)00031-9

    Article  MathSciNet  MATH  Google Scholar 

  20. Kulik, A., Shachnai, H., Tamir, T.: Approximations for monotone and nonmonotone submodular maximization with knapsack constraints. Math. Oper. Res. 38(4), 729–739 (2013)

    Article  MathSciNet  Google Scholar 

  21. Lee, J., Sviridenko, M., Vondrák, J.: Submodular maximization over multiple matroids via generalized exchange properties. Math. Oper. Res. 35(4), 795–806 (2010). https://doi.org/10.1007/978-3-642-03685-9_19

    Article  MathSciNet  MATH  Google Scholar 

  22. Marden, J.R., Wierman, A.: Distributed welfare games. Oper. Res. 61(1), 155–168 (2013). https://doi.org/10.1287/opre.1120.1137

    Article  MathSciNet  MATH  Google Scholar 

  23. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-I. Math. Program. 14(1), 265–294 (1978). https://doi.org/10.1007/BF01588971

    Article  MathSciNet  MATH  Google Scholar 

  24. Santiago, R., Shepherd, F.B.: Multi-agent submodular optimization. In: Proceedings of APPROX/RANDOM. LIPIcs, vol. 116, pp. 23:1–23:20 (2018). https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.23

  25. Santiago, R., Shepherd, F.B.: Multivariate submodular optimization. In: Proceedings of ICML, vol. 97, pp. 5599–5609. PMLR (2019)

    Google Scholar 

  26. Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004). https://doi.org/10.1016/S0167-6377(03)00062-2

    Article  MathSciNet  MATH  Google Scholar 

  27. Vondrak, J.: Optimal approximation for the submodular welfare problem in the value oracle model. In: Proceedings of STOC, pp. 67–74. ACM (2008). https://doi.org/10.1145/1374376.1374389

  28. Ward, J.: A (k+3)/2-approximation algorithm for monotone submodular k-set packing and general k-exchange systems. In: Proceedings of STACS, pp. 42–53 (2012). https://doi.org/10.4230/LIPIcs.STACS.2012.42

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Cellinese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cellinese, F., D’Angelo, G., Monaco, G., Velaj, Y. (2021). The Multi-budget Maximum Weighted Coverage Problem. In: Calamoneri, T., Corò, F. (eds) Algorithms and Complexity. CIAC 2021. Lecture Notes in Computer Science(), vol 12701. Springer, Cham. https://doi.org/10.1007/978-3-030-75242-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75242-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75241-5

  • Online ISBN: 978-3-030-75242-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics