Skip to main content

Part of the book series: Internet of Things ((ITTCC))

Abstract

Application of Artificial Intelligence (AI) has revolutionized many sectors like healthcare, agriculture, finance, computer vision, ecommerce, social media, data security, and education. AI plays a vital role in the health sector, like detecting, diagnosing, predicting diseases in advance to reduce the suffering and mortality rate. Besides, application of AI techniques improves hospital management and detection of health insurance fraud. With increased automation in the medical sector, advancements in image acquisition devices and availability of personal wearable devices at affordable cost, voluminous data are being generated. Deep learning techniques can leverage this big data with powerful Graphical Processing Unit (GPU) based systems to analyze and detect hidden patterns in the data and gain insights. Deep learning techniques can learn features from big data sets to get insights that will assist doctors in early diagnosis and treatment. Medical data analysis faces many challenges like limited data availability due to privacy issues, unbalanced data sets for diseases like cancer and rare disease, unavailability of specialists for labeling the data, variation in the experts’ opinion in decision making, variability in genes, environment, and lifestyle of individuals. This chapter discusses the techniques for dealing with the challenges of medical data processing. It also presents the AI techniques for identifying and predicting different types of cancer, diabetes, cardiac, and rare diseases at an early stage using data sets of different formats like clinical data, gene expression data, and medical images. The chapter includes the sections that discuss the methods to deal with unbalanced, small, and high-dimensional data sets, data and label denoising methods, and feature representation learning using neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amini, A., Chen, W., Fortino, G., Li, Y., Pan, Y. & Wang, M. D. (2020). Editorial: Special issue on AI-driven informatics, sensing, imaging and big data analytics for fighting the covid-19 pandemic. IEEE Journal of Biomedical and Health Informatics, 24(10).

    Google Scholar 

  2. Iyengar, S., Bonda, F. T., Gravina, R., Guerrieri, A., Fortino, G., & Sangiovanni Vincentelli, A., 2008, March. A framework for creating healthcare monitoring applications using wireless body sensor networks. In Proceedings of the ICST 3rd international conference on body area networks (pp. 1–2).

    Google Scholar 

  3. Piccialli, F., Di Somma, V., Giampaolo, F., Cuomo, S., & Fortino, G. (2021). A survey on deep learning in medicine: Why, how and when? Information Fusion, 66, 111–137.

    Article  Google Scholar 

  4. Wang, Z., Wu, D., Gravina, R., Fortino, G., Jiang, Y., & Tang, K. (2017). Kernel fusion-based extreme learning machine for cross-location activity recognition. Information Fusion, 37, 1–9.

    Article  Google Scholar 

  5. Chatterjee, R., Maitra, T., Islam, S. H., Hassan, M. M., Alamri, A., & Fortino, G. (2019). A novel machine learning-based feature selection for motor imagery EEG signal classification in internet of medical things environment. Future Generation Computer Systems, 98, 419–434.

    Article  Google Scholar 

  6. Aluvalu, R., & Muddana, L. (2016). A dynamic attribute-based risk aware access control model (DA-RAAC) for cloud computing. 2016 IEEE international conference on computational intelligence and computing research (ICCIC). IEEE.

    Google Scholar 

  7. Köse, T., Özgür, S., Coşgun, E., Keskinoğlu, A., & Keskinoğlu, P. (2013). The prevention and handling of the missing data. Korean Journal of Anesthesiology, 64(5), 402–406.

    Article  Google Scholar 

  8. Leke, C. A., & Marwala, T. (2019). Introduction to missing data estimation. In Deep learning and missing data in engineering systems of studies in big data (Vol. 48, pp. 1–20). Springer.

    Chapter  Google Scholar 

  9. Sterne, J. A. C., White, I. R., Carlin, J. B., et al. (2009). Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls. BMJ, 338(1), b2393.

    Article  Google Scholar 

  10. Wells, B. J., Nowacki, A. S., Chagin, K., & Kattan, M. W. (2017). Strategies for handling missing data in electronic health record derived data. eGEMs (Generating Evidence & Methods to Improve Patient Outcomes), 1(3).

    Google Scholar 

  11. Brodley, C. E., & Fried, M. A. (1999). Identifying mislabeled training data. Journal of Artificial Intelligence Research, 11, 131–167.

    Article  Google Scholar 

  12. Ghosh, A., Manwani, N., & Sastry, P. S. (2015). Making risk minimization tolerant to label noise. Elsevier Neurocomputing, 160, 93–107.

    Article  Google Scholar 

  13. Speth, J., & Hand, E. M. (2019). Automated label noise identification for facial attribute recognition. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR) workshops (pp. 25–28).

    Google Scholar 

  14. Wang, Y., & Liu, W., et al. (2018). Iterative learning with open-set noisy labels. 2018 IEEE/CVF conference on computer vision and pattern recognition. https://doi.org/10.1109/CVPR.2018.00906.

  15. Nigam, N., Dutta, T., & Hari, P. G. (2019). Impact of noisy labels in learning techniques: A survey. In Conference: Advances in data and information sciences.

    Google Scholar 

  16. Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629–639.

    Article  Google Scholar 

  17. Rudin, L. I., & Osher, S.. Total variation-based image restoration with free local constraints. Image Processing, 1994. Proceedings. ICIP-94. IEEE international conference (Vol. 1). IEEE.

    Google Scholar 

  18. Coifman, R. R., & Donoho, D. L. (1995). Translation-invariant denoising. Springer.

    MATH  Google Scholar 

  19. Yaroslavsky, L. P., Egiazarian, K. O., & Astola, J. T.. (2001). Transform domain image restoration methods: Review, comparison, and interpretation. Photonics west 2001-electronic imaging. International Society for Optics and Photonics.

    Google Scholar 

  20. Portilla, J., et al. (2003). Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Transactions on Image Processing, 12(11), 1338–1351.

    Article  MathSciNet  Google Scholar 

  21. Gondara, L. (2016). Medical image denoising using convolutional denoising autoencoders. In 2016 IEEE 16th international conference on data mining workshops (ICDMW), Barcelona, Spain (pp. 241–246).

    Google Scholar 

  22. Buades, A., Coll, B., & Morel, J.-M. (2005). A review of image denoising algorithms, with a new one. Multiscale Modeling and Simulation, 4(2), 490–530.

    Article  MathSciNet  Google Scholar 

  23. Dabov, K., et al. (2007). Image denoising by sparse 3-D transform domain collaborative filtering. IEEE Transactions on Image Processing, 16(8), 2080–2095.

    Article  MathSciNet  Google Scholar 

  24. Olshausen, B. A., & Field, D. J. (1997). Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research, 37(23), 3311–3325.

    Article  Google Scholar 

  25. Elad, M., & Aharon, M. (2006). Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 15(12), 3736–3745.

    Article  MathSciNet  Google Scholar 

  26. Mairal, J., et al. (2009). Online dictionary learning for sparse coding. Proceedings of the 26th annual international conference on machine learning. ACM.

    Google Scholar 

  27. Vincent, P., et al. (2008). Extracting and composing robust features with denoising autoencoders. Proceedings of the 25th international conference on machine learning. ACM.

    Google Scholar 

  28. Akkalakshmi, M., Riyazuddin, Y. M., Revathi, V., & Pal, A. (2020). Autoencoder-based feature learning and up-sampling to enhance cancer prediction. International Journal of Future Generation Communication and Networking, 13(1), 1453–1459.

    Google Scholar 

  29. Payan, A., & Montana, G. (2015). Predicting Alzheimer’s disease: A neuroimaging study with 3D convolutional neural networks. arXiv preprint arXiv:1502.02506.

    Google Scholar 

  30. Mansoor, A., Cerrolaza, J., Idrees, R., Biggs, E., Alsharid, M., Avery, R., & Linguraru, M. G. (2016). Deep learning-guided partitioned shape model for anterior visual pathway segmentation. IEEE Transactions on Medical Imaging, 35(8), 1856–1865. https://doi.org/10.1109/TMI.2016.2535222

    Article  Google Scholar 

  31. Wong, K. K., Fortino, G., & Abbott, D. (2020). Deep learning-based cardiovascular image diagnosis: A promising challenge. Future Generation Computer Systems, 110, 802–811.

    Article  Google Scholar 

  32. Khan, S. R., Sikandar, M., Almogren, A., Din, I. U., Guerrieri, A., & Fortino, G. (2020). IoMT-based computational approach for detecting brain tumor. Future Generation Computer Systems, 109, 360–367.

    Article  Google Scholar 

  33. Jabbar, M. A., Aluvalu, R., & Reddy, S. (2017). Cluster-based ensemble classification for intrusion detection system. In Proceedings of the 9th international conference on machine learning and computing (pp. 253–257). ACM.

    Google Scholar 

  34. Xu, J., Xiang, L., Liu, Q., Gilmore, H., Wu, J., Tang, J., & Madabhushi, A. (2016). Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Transactions on Medical Imaging, 35, 119–130.

    Article  Google Scholar 

  35. Cheng, J.-Z., Ni, D., Chou, Y.-H., et al. (2016). Computer-aided diagnosis with deep learning architecture: Applications to breast lesions in US images and pulmonary nodules in CT scans. Scientific Reports, 6, 24454. https://doi.org/10.1038/srep24454

    Article  Google Scholar 

  36. Ismail, W. N., Hassan, M. M., Alsalamah, H. A., & Fortino, G. (2020). CNN-based health model for regular health factors analysis in internet-of-medical things environment. IEEE Access, 8, 52541–52549.

    Article  Google Scholar 

  37. Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359.

    Article  Google Scholar 

  38. Zhang, R., Zheng, Y., Mak, T. W. C., Yu, R., Wong, S. H., Lau, J. Y., & Poon, C. C. (2017). Automatic detection and classification of colorectal polyps by transferring low-level CNN features from nonmedical domain. IEEE Journal of Biomedical and Health Informatics, 21(1), 41–47.

    Article  Google Scholar 

  39. Menegola, A., Fornaciali, M., Pires, R., Bittencourt, F. V., Avila, S., & Valle, E. (2017). Knowledge transfer for melanoma screening with deep learning. In International symposium on biomedical imaging (ISBI) (pp. 297–300). IEEE.

    Google Scholar 

  40. Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., van der Laak, J. A., Van Ginneken, B., & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Lakshmi Muddana or V. Revathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muddana, A.L., Chennam, K.K., Revathi, V. (2021). Artificial Intelligence for Disease Identification and Diagnosis. In: Siarry, P., Jabbar, M., Aluvalu, R., Abraham, A., Madureira, A. (eds) The Fusion of Internet of Things, Artificial Intelligence, and Cloud Computing in Health Care. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-75220-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75220-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75219-4

  • Online ISBN: 978-3-030-75220-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics