Skip to main content

Smartphone-Based Lifelogging: Toward Realization of Personal Big Data

  • Chapter
  • First Online:
Information and Knowledge in Internet of Things

Abstract

The technological advancements have turned smartphones into powerful lifelogging devices. Smartphone-based lifelogging system captures and stores information about peoples’ daily life activities, behaviors, interactions, and contexts into rich personal big data archives. The personal big data is of potential interest to the information sciences researchers and policy and decision makers in governments and organizations because of the availability of information, which would be impossible otherwise. Despite its potential, the smartphone-based lifelogging has been limitedly been explored from the big data perspective. This paper aims to provide a close-up view of the smartphone-based lifelogging as the source of personal big data. First, the smartphone-based lifelogging is reviewed to demonstrate its technological capabilities for personal big data generation and conformance to big data characteristics, alongside key personal big data applications. Second, a generalized architecture is presented for smartphone-based lifelog personal big data systems using big data systems design principals to advance the research in this space. Third, several challenges are highlighted regarding data capture, storage, analysis, visualization, privacy, and security. To address these concerns, several recommendations are suggested to improve personal big data generation, management, and usability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gemmell, J., Bell, G., & Lueder, R. (2006). MyLifeBits: A personal database for everything. Communications of the ACM, 49(1), 88–95.

    Article  Google Scholar 

  2. Khan, I., Ali, S., & Khusro, S. (2019). Smartphone based lifelogging: investigation of data volume generation strength of smartphone sensors. In International Conference on Simulation Tools and Techniques (pp. 63–73). Springer.

    Chapter  Google Scholar 

  3. Dodge, M., & Kitchin, R. (2007). ‘Outlines of a world coming into existence’: pervasive computing and the ethics of forgetting. Environment and Planning B: Planning and Design, 34(3), 431–445.

    Article  Google Scholar 

  4. Mohamed, E. S. T. (2012). Designing and evaluating a user interface for continues embedded lifelogging based on physical context. Newcastle University.

    Google Scholar 

  5. Gurrin, C., Smeaton, A. F., & Doherty, A. R. (2014). LifeLogging: Personal big data. Foundations and Trends in Information Retrieval, 8(1), 1–125.

    Article  Google Scholar 

  6. Kalnikaite V., Sellen A., Whittaker S., Kirk D. (2010). Now let me see where i was: understanding how lifelogs mediate memory. In: Paper presented at the proceedings of the SIGCHI conference on human factors in computing systems (pp. 2045–2054). Atlanta, Georgia, USA.

    Google Scholar 

  7. Le HV., Clinch S., Sas C., Dingler T., Henze N., Davies N. (2016). Impact of video summary viewing on episodic memory recall: Design guidelines for video summarizations. In: Proceedings of the 2016 CHI conference on human factors in computing systems (pp. 4793–4805).

    Google Scholar 

  8. O’Grady, M. J., O’Hare, G. M., & Sas, C. (2005). Mobile agents for mobile tourists: A user evaluation of Gulliver’s Genie. Interacting with Computers, 17(4), 343–366.

    Article  Google Scholar 

  9. Sellen, A., & Whittaker, S. (2010). Beyond total capture: A constructive critique of lifelogging. Communications of the ACM, 53(5), 70–77.

    Article  Google Scholar 

  10. Ali, S., Khusro, S., Khan, A., Khan, I., & Solheria, S. F. (2019). An insight of smartphone-based lifelogging research: Issues, challenges, and research opportunities. Proceedings of the Pakistan Academy of Sciences: A Physical and Computational Sciences, 56(3), 1–16.

    MathSciNet  Google Scholar 

  11. Van Den Hoven, E., Sas, C., & Whittaker, S. (2012). Introduction to this special issue on designing for personal memories: Past, present, and future. Human–Computer Interaction, 27(1–2), 1–12.

    Google Scholar 

  12. Hodges S., Williams L., Berry E., Izadi S., Srinivasan J., Butler A., Smyth G., Kapur N., Wood K. (2006). SenseCam: a retrospective memory aid. In: Paper presented at the Proceedings of the 8th international conference on ubiquitous computing. (pp. 177–193). Springer-Verlag, Orange County, CA.

    Google Scholar 

  13. Siewiorek D., Smailagic A., Furukawa J., Krause A., Moraveji N., Reiger K., Shaffer J., Wong FL.. (2003). SenSay A: Context-aware mobile phone. In: paper presented at the Proceedings of the 7th IEEE international symposium on wearable computers (pp. 248). IEEE Computer Society, NY, USA.

    Google Scholar 

  14. Shah M., Mears B., Chakrabarti C., Spanias A. (2012). Lifelogging: Archival and retrieval of continuously recorded audio using wearable devices. In: IEEE international conference on emerging signal processing applications (ESPA) (pp. 99–102). IEEE.

    Google Scholar 

  15. Chennuru S. K., Chen P-W., Zhu J., Zhang J. Y. (2010). Mobile lifelogger – recording, indexing, and understanding a mobile user's life. In: Gris ML, Yang G (eds) International conference on mobile computing, applications, and services (pp. 263–281). Springer.

    Google Scholar 

  16. Qu C., Sas C., Doherty G. (2019). Exploring and designing for memory impairments in depression. In: Proceedings of the 2019 CHI conference on human factors in computing systems (pp. 1–15).

    Google Scholar 

  17. Belimpasakis P., Roimela K., Yu Y.. 2009. Experience Explorer: A Life-Logging Platform Based on Mobile Context Collection. In: Third international conference on next generation mobile applications, services and technologies - NGMAST '09 (pp. 77–82).

    Google Scholar 

  18. Albatal R., Gurrin C., Zhou J., Yang Y. Carthy D., Li N. (2013). SenseSeer mobile-cloud-based lifelogging framework. In: The IEEE international symposium on technology and society (ISTAS) (pp. 27–29).Toronto, Canada.

    Google Scholar 

  19. Rawassizadeh, R., Tomitsch, M., & Wac, K. (2013). Tjoa AM:UbiqLog: A generic mobile phone-based life-log framework. Personal Ubiquitous Comput, 17(4), 621–637.

    Article  Google Scholar 

  20. Ali S: Exploiting sensor data semantics for smartphone-based lifelogging: Towards the development of digital prosthetic memory on smartphone. University of Peshawar, Higher Education Commission Pakistan (2018).

    Google Scholar 

  21. Ali, S., Khusro, S., Khan, A. A., & Hassan, L. (2014). A survey of mobile phones context-awareness using sensing computing research. Journal of Engineering and Applied Sciences, 33(4), 75–93.

    Google Scholar 

  22. Ali, S., Khusro, S., Rauf, A., & Mahfooz, S. (2014). Sensors and mobile phones: evolution and state-of-the-art. Pakistan Journal of Science, 66(4), 386–400.

    Google Scholar 

  23. Myka A. (2005). Nokia lifeblog – towards a truly personal multimedia information system. In: Workshop on mobile data banken and information systems – MDBIS'05 (pp. 21–30).

    Google Scholar 

  24. Memon, M. A., Bhatti, S., & Mahoto, N. A. (2016). A digital diary: Remembering the past using the present context. Mehran University Research Journal of Engineering & Technology, 35(2), 275–286.

    Google Scholar 

  25. Chen Y., Jones G. J. F. (2010). Augmenting human memory using personal lifelogs. In: paper presented at the proceedings of the 1st augmented human international conference (pp. 1–9). ACM, France.

    Google Scholar 

  26. Bush, V. (1996). As we may think. Interactions, 3(2), 35–46.

    Article  Google Scholar 

  27. Oren E. (2006). An overview of information management and knowledge work studies: lessons for the semantic desktop. In: Paper presented at the SemDesk conference, vol. 202. CEUR-WS.org.

  28. Engelbart D. C. (1988). A conceptual framework for the augmentation of man’s intellect. Irene G (ed). Computer-supported cooperative work. Morgan Kaufmann Publishers Inc.

    Google Scholar 

  29. O’Hara, K., Tuffield, M., & Shadbolt, N. (2008). Lifelogging: Privacy and empowerment with memories for life. IDIS, 1(1), 155–172.

    Article  Google Scholar 

  30. Khan, I., Khusro, S., Ali, S., & Din, A. U. (2016). Daily life activities on smartphones and their effect on battery life for better personal information management. Proceedings of the Pakistan Academy of Sciences: A Physical and Computational Sciences, 53(1), 61–74.

    Google Scholar 

  31. Fertig S., Freeman E., Gelernter D. (1996). Lifestreams: an alternative to the desktop metaphor. In: Conference companion on human factors in computing systems (pp. 410–411). ACM.

    Google Scholar 

  32. Dumais S., Cutrell E., Cadiz J. J., Jancke G., Sarin R., Robbins D. C. (2016). Stuff I’ve seen: a system for personal information retrieval and re-use. In: ACM SIGIR forum, vol. 49. (pp. 28–35). ACM.

    Google Scholar 

  33. Ahmed M, Hoang HH, Karim MS, Khusro S, Lanzenberger M, Latif K, Michlmayr E, Mustofa K, Nguyen H, Rauber A. (2004). ‘SemanticLIFE’–a framework for managing information of a human lifetime. In: Sixth international conference on information integration and web based applications & services.

    Google Scholar 

  34. Dittrich J-P. (2006). iMeMex: A platform for personal dataspace management. In: Proceedings of workshops of international ACM SIGIR conference on research and development in information retrieval (pp. 40–43). ACM.

    Google Scholar 

  35. DARPA/IPTO: LifeLog proposer information pamphlet. Homepage, http://realnews247.com/lifelog.htm. Last accessed 2019/08/23.

  36. Schlenoff C., Weiss B., Steves M. P. (2010). Lessons learned in evaluating DARPA advanced military technologies. In: Proceedings of the 10th performance metrics for intelligent systems workshop (pp 227–234). ACM.

    Google Scholar 

  37. Groza T., Handschuh S., Moeller K., Grimnes G., Sauermann L., Minack E., Mesnage C., Jazayeri M., Reif G., Gudjónsdóttir R. (2007). The NEPOMUK project – on the way to the social semantic desktop. In: Paper presented at the proceedings of I-Semantics' 07 (pp. 201–211). JUCS.

    Google Scholar 

  38. Sauermann L. (2005). The gnowsis semantic desktop for information integration. In: Paper presented at the proceedings of the IOA 2005 workshop at the WM. Springer.

    Google Scholar 

  39. Quan D., Huynh D., Karger D. R. (2003). Haystack: A platform for authoring end user semantic web applications. In: International semantic web conference (pp. 738–753). Springer.

    Google Scholar 

  40. Cheyer A., Park J., Giuli R. (2005). IRIS: integrate, Relate. Infer. Share. Sri International Menlo Park, CA.

    Google Scholar 

  41. Mann, S. (1996). Smart clothing: The shift to wearable computing. Communications of the ACM, 39(8), 23–24.

    Article  Google Scholar 

  42. Mann S., Niedzviecki H. (2001). Cyborg: Digital destiny and human possibility in the age of the wearable computer. Random House Inc.

    Google Scholar 

  43. Mann S. (2004). Continuous lifelong capture of personal experience with EyeTap. In: Proceedings of the 1st ACM workshop on continuous archival and retrieval of personal experiences (pp. 1–21). ACM, New York, USA.

    Google Scholar 

  44. Mann, S. (1997). Wearable computing: A first step toward personal imaging. Computer, 30(2), 25–32.

    Article  Google Scholar 

  45. Mann S., Fung J., Aimone C., Sehgal A., Chen D.. (2005). Designing EyeTap digital eyeglasses for continuous lifelong capture and sharing of personal experiences. In: CHI 2005 Conference on computer human interaction. Portland, Oregon, USA.

    Google Scholar 

  46. Wang P., Smeaton A. F., Zhang Y., Deng B. (2014). Enhancing the detection of concepts for visual lifelogs using contexts instead of ontologies. In: International workshop on the visualisation of heterogeneous multimedia content, VisHMC. Chengdu, China.

    Google Scholar 

  47. Aizawa K., Tancharoen D., Kawasaki S., Yamasaki T. (2004). Efficient retrieval of life log based on context and content. In: Paper presented at the proceedings of the 1st ACM workshop on continuous archival and retrieval of personal experiences (pp. 22–31). ACM, New York, USA.

    Google Scholar 

  48. Tentacle P.. Cyber Goggles: High-tech memory aid. Homepage. http://pinktentacle.com/2008/03/cyber-goggles-high-tech-memory-aid/. Last accessed 2016/05/22.

  49. Mann S., Fung J., Lo R. (2006). Cyborglogging with camera phones: Steps toward equiveillance. In: Proceedings of the 14th ACM international conference on Multimedia (pp. 177–180). ACM.

    Google Scholar 

  50. Vemuri, S., Schmandt, C., Bender, W., Tellex, S., & Lassey, B. (2004). An audio-based personal memory Aid. UbiComp 2004: Ubiquitous computing. Springer Berlin Heidelberg.

    Google Scholar 

  51. Ellis D. P., Lee K. (2004). Minimal-impact audio-based personal archives. In: Proceedings of the1st ACM workshop on continuous archival and retrieval of personal experiences (pp. 39–47). ACM.

    Google Scholar 

  52. Cheng W. C., Golubchik L., Kay D. G. (2004). Total recall: are privacy changes inevitable?. In: Paper presented at the proceedings of the 1st ACM workshop on continuous archival and retrieval of personal experiences (pp. 86–92). ACM, New York, USA.

    Google Scholar 

  53. DeVaul R. W., Clarkson B., Pentland A. S.. (2004). The memory glasses: Towards a wearable, context aware, situation-appropriate reminder system. In: CHI 2000 workshop on situated interaction in ubiquitous computing.

    Google Scholar 

  54. Clarkson B., Mase K., Pentland A. (2001). The familiar: a living diary and companion. In: Paper presented at the CHI '01 extended abstracts on human factors in computing systems (pp. 271–272). ACM, Seattle, Washington.

    Google Scholar 

  55. Browne, G., Berry, E., Kapur, N., Hodges, S., Smyth, G., Watson, P., & Wood, K. (2011). SenseCam improves memory for recent events and quality of life in a patient with memory retrieval difficulties. Memory, 19(7), 713–722.

    Article  Google Scholar 

  56. Hodges, S., Berry, E., & Wood, K. (2011). SenseCam: A wearable camera that stimulates and rehabilitates autobiographical memory. Memory, 19(7), 685–696.

    Article  Google Scholar 

  57. Del Giudice K., Gardner M. The message of the pensieve: Realizing memories through the world wide web and virtual reality. Homepage. http://web.mit.edu/comm-forum/mit6/papers/Delgiudice.pdf. Last accessed 2016/07/22.

  58. Gurrin, C., Qiu, Z., Hughes, M., Caprani, N., Doherty, A. R., Hodges, S. E., & Smeaton, A. F. (2013). The smartphone as a platform for wearable cameras in health research. American Journal of Preventive Medicine, 44(3), 308–313.

    Article  Google Scholar 

  59. Aizenbud-Reshef N., Belinsky E., Jacovi M., Laufer D., Soroka V. (2008). Pensieve: augmenting human memory. In: CHI '08 extended abstracts on human factors in computing systems (pp. 3231–3236). ACM, Florence, Italy.

    Google Scholar 

  60. Froehlich J., Chen M. Y., Consolvo S., Harrison B., Landay J. A. (2007). My experience: a system for in situ tracing and capturing of user feedback on mobile phones. In: paper presented at the Proceedings of the 5th international conference on mobile systems, applications and services (pp. 57–70). ACM, San Juan, Puerto Rico.

    Google Scholar 

  61. Wong, K. Y. (2010). Cell phones as mobile computing devices. IT professional, 12(3), 40–45.

    Article  Google Scholar 

  62. Barton J. J., Zhai S., Cousins S. B.. (2005). Mobile phones will become the primary personal computing devices. In: Proceedings. 7th IEEE workshop on mobile computing systems and applications, WMCSA'06. (pp. 3–9). IEEE.

    Google Scholar 

  63. Ig-Jae K., Sang Chul A., Heedong K., Hyoung-Gon K. (2008). Automatic Lifelog media annotation based on heterogeneous sensor fusion. In: Proceedings of IEEE international conference on multisensor fusion and integration for intelligent systems, MFI 2008 (pp. 703–708). IEEE.

    Google Scholar 

  64. Eagle, N., & Greene, K. (2015). Mobile phones, sensors, and lifelogging: A BIT of reality mining. MIT Press.

    Google Scholar 

  65. Rawassizadeh R. (2012). A holistic multi-purpose life logging framework. Uniwien.

    Google Scholar 

  66. Ali, S., & Khusro, S. (2016). Mobile phone sensing: A new application paradigm. Indian Journal of Science and Technology, 9(19), 1–41.

    Article  Google Scholar 

  67. Tulving, E., & Thomson, D. M. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, 80(5), 359–380.

    Article  Google Scholar 

  68. Lamming M., Flynn M. (1994). ‘Forget-me-not’: Intimate computing in support of human memory. In: Paper presented at the proceedings of FRIEND21: symposium on next generation human interfaces. Tokyo, Japan.

    Google Scholar 

  69. Sanches, P., Höök, K., Sas, C., & Ståhl, A. (2019). Ambiguity as a resource to inform proto-practices: The case of skin conductance. ACM Transactions on Computer-Human Interaction (TOCHI), 26(4), 1–32.

    Article  Google Scholar 

  70. Sas C., Fratczak T., Rees M., Gellersen H., Kalnikaite V., Coman A., Höök K. (2013). AffectCam: arousal-augmented sensecam for richer recall of episodic memories. In: CHI'13 extended abstracts on human factors in computing systems (pp 1041–1046).

    Google Scholar 

  71. Wang P. (2011). Semantic interpretation of events in lifelogging. Dublin City University.

    Google Scholar 

  72. Sellen A. J., Fogg A., Aitken M., Hodges S., Rother C., Wood K. (2007). Do life-logging technologies support memory for the past?: an experimental study using sensecam. In: Paper presented at the proceedings of the SIGCHI conference on human factors in computing systems (pp. 81–90). ACM, California, USA.

    Google Scholar 

  73. Hori T., Aizawa K. (2003). Context-based video retrieval system for the life-log applications. In: Paper presented at the proceedings of the 5th ACM SIGMM international workshop on multimedia information retrieval (pp. 31–38). ACM, Berkeley, California.

    Google Scholar 

  74. Blum, M., Pentland, A., & Troster, G. (2006). InSense: Interest-based life logging. MultiMedia, IEEE, 13(4), 40–48.

    Article  Google Scholar 

  75. Luszcz, M. A., Bryan, J., & Kent, P. (1997). Predicting episodic memory performance of very old men and women: Contributions from age, depression, activity, cognitive ability, and speed. Psychology and Aging, 12(2), 340–351.

    Article  Google Scholar 

  76. Vemuri S., Schmandt C., Bender W.. (2006). iRemember: a personal, long-term memory prosthesis. In: 3rd ACM workshop on continuous archival and retrieval of personal experiences CARPE' 06 (pp. 65–74). Santa Barbara, California, USA.

    Google Scholar 

  77. Qiu Z, Gurrin C, Doherty A. R., Smeaton A. F.. (2012). A real-time life experience logging tool. In: International conference on multimedia modeling (pp. 636–638). Springer.

    Google Scholar 

  78. Vemuri, S., & Bender, W. (2004). Next-generation personal memory aids. BT Technology Journal, 22(4), 125–138.

    Article  Google Scholar 

  79. Packer H. S, Smith A, Lewis P. (2012). Memorybook: generating narratives from lifelogs. In: Proceedings of the 2nd workshop on narrative and hypertext (pp. 7–12).

    Google Scholar 

  80. Gaonkar S., Li J., Choudhury R. R., Cox L., Schmidt A.. (2008). Micro-Blog: sharing and querying content through mobile phones and social participation. In: Paper presented at the Proceedings of the 6th international conference on mobile systems, applications, and services (pp. 174–186). ACM, Breckenridge, CO, USA.

    Google Scholar 

  81. Harper, R. H. R., Lamming, M. G., & Newman, W. M. (1992). Locating systems at work: Implications for the development of active badge applications. Interacting with Computers, 4(3), 343–363.

    Article  Google Scholar 

  82. Byrne D., Lavelle B., Doherty A. R., Jones G. J. F., Smeaton A. F. (2007). Using bluetooth and GPS metadata to measure event similarity in SenseCam Images. In: Paper presented at the IMAI 2007 – 5th international conference on intelligent multimedia and ambient intelligence (pp. 1–7). Salt Lake City, Utah.

    Google Scholar 

  83. Raento, M., Oulasvirta, A., Petit, R., & Toivonen, H. (2005). ContextPhone: A prototyping platform for context-aware mobile applications. IEEE Pervasive Computing, 4(2), 51–59.

    Article  Google Scholar 

  84. Eagle, N., & Pentland, A. (2006). Reality mining: Sensing complex social systems. Personal Ubiquitous Computing, 10(4), 255–268.

    Article  Google Scholar 

  85. Lavelle B., Byrne D., Gurrin C., Smeaton A. F., Jones G. J. F. (2007). Bluetooth familiarity: Methods of calculation, applications and limitations. In: MIRW 2007 - Mobile interaction with the real world, Workshop at the MobileHCI07: 9th international conference on human computer interaction with mobile devices and services. Singapore.

    Google Scholar 

  86. Ashbrook, D., & Starner, T. (2003). Using GPS to learn significant locations and predict movement across multiple users. Personal Ubiquitous Computing, 7(5), 275–286.

    Article  Google Scholar 

  87. Hightower, J., Consolvo, S., LaMarca, A., Smith, I., & Hughes, J. (2005). Learning and recognizing the places we go. UbiComp 2005: Ubiquitous computing. Springer Berlin Heidelberg.

    Google Scholar 

  88. Jeong, J. P., Yeon, S., Kim, T., Lee, H., Kim, S. M., & Kim, S.-C. (2018). SALA: Smartphone-assisted localization algorithm for positioning indoor IoT devices. Wireless Networks, 24(1), 27–47.

    Article  Google Scholar 

  89. Ashraf, I., Hur, S., & Park, Y. (2019). Application of deep convolutional neural networks and smartphone sensors for indoor localization. Applied Sciences, 9(11), 2337.

    Article  Google Scholar 

  90. Sas, C., & Neustaedter, C. (2017). Exploring DIY practices of complex home technologies. ACM Transactions on Computer-Human Interaction (TOCHI), 24(2), 1–29.

    Article  Google Scholar 

  91. Shoaib, M., Bosch, S., Incel, O. D., Scholten, H., & Havinga, P. J. (2015). A survey of online activity recognition using mobile phones. Sensors, 15(1), 2059–2085.

    Article  Google Scholar 

  92. Demrozi, F., Pravadelli, G., Bihorac, A., & Rashidi, P. (2020). Human activity recognition using inertial. Physiological and Environmental Sensors: A Comprehensive Survey. IEEE Access, 8, 210816–210836.

    Google Scholar 

  93. Wang R., Chen F., Chen Z., Li T., Harari G., Tignor S., Zhou X., Ben-Zeev D., Campbell A. T.. (2014). StudentLife: assessing mental health, academic performance and behavioral trends of college students using smartphones. In: Proceedings of the 2014 ACM international joint conference on pervasive and ubiquitous computing (pp. 3–14). ACM.

    Google Scholar 

  94. Chen X., Ho C. T., Lim E. T., Kyaw T. (2007). Cellular phone based online ECG processing for ambulatory and continuous detection. In: 2007 computers in cardiology (pp. 653–656). IEEE.

    Google Scholar 

  95. Consolvo S., McDonald D. W., Toscos T., Chen M. Y., Froehlich J., Harrison B., Klasnja P., LaMarca A., LeGrand L., Libby R., Smith I., Landay J. A. (2008). Activity sensing in the wild: a field trial of ubifit garden. In: Paper presented at the proceedings of the SIGCHI conference on human factors in computing systems (pp. 1797–806). ACM, Florence, Italy.

    Google Scholar 

  96. Anjum A., Ilyas M. U.. (2013). Activity recognition using smartphone sensors. In: 2013 IEEE 10th consumer communications and networking conference (CCNC) (pp. 914–919). IEEE.

    Google Scholar 

  97. Siirtola P, Röning J. (2013). Ready-to-use activity recognition for smartphones. In: IEEE symposium on computational intelligence and data mining (CIDM) 2013 (pp. 59–64). IEEE.

    Google Scholar 

  98. Martín, H., Bernardos, A. M., Iglesias, J., & Casar, J. R. (2013). Activity logging using lightweight classification techniques in mobile devices. Personal and Ubiquitous Computing, 17(4), 675–695.

    Article  Google Scholar 

  99. Anguita, D., Ghio, A., Oneto, L., Parra, X., & Reyes-Ortiz, J. L. (2013). Energy efficient smartphone-based activity recognition using fixed-point arithmetic. JUCS, 19(9), 1295–1314.

    Google Scholar 

  100. Vo, Q. V., Hoang, M. T., & Choi, D. (2013). Personalization in mobile activity recognition system using-medoids clustering algorithm. International Journal of Distributed Sensor Networks.

    Google Scholar 

  101. Khan, A. M., Siddiqi, M. H., & Lee, S.-W. (2013). Exploratory data analysis of acceleration signals to select light-weight and accurate features for real-time activity recognition on smartphones. Sensors, 13(10), 13099–13122.

    Article  Google Scholar 

  102. Zhao K., Du J., Li C., Zhang C., Liu H., Xu C. (2013). Healthy: A diary system based on activity recognition using smartphone. In: 2013 IEEE 10th international conference on mobile Ad-Hoc and sensor systems (pp. 290–294). IEEE.

    Google Scholar 

  103. Kim T-S., Cho J-H., Kim J. T.. (2013). Mobile motion sensor-based human activity recognition and energy expenditure estimation in building environments. In: Sustainability in energy and buildings (pp. 987–993). Springer.

    Google Scholar 

  104. Khan A. M., Tufail A., Khattak A. M., Laine T. H.. (2014). Activity recognition on smartphones via sensor-fusion and kda-based svms. International Journal of Distributed Sensor Networks.

    Google Scholar 

  105. Shoaib, M., Bosch, S., Incel, O. D., Scholten, H., & Havinga, P. J. (2016). Complex human activity recognition using smartphone and wrist-worn motion sensors. Sensors, 16(4), 426.

    Article  Google Scholar 

  106. Almaslukh, B., AlMuhtadi, J., & Artoli, A. (2017). An effective deep autoencoder approach for online smartphone-based human activity recognition. International Journal of Computer Science Network Security, 17(4), 160–165.

    Google Scholar 

  107. Masum A. K. M., Barua A., Bahadur E. H., Alam M. R., Chowdhury M. A. U. Z., Alam M. S. (2018). Human activity recognition using multiple smartphone sensors. In: 2018 international conference on innovations in science, engineering and technology (ICISET) (pp. 468–473). IEEE.

    Google Scholar 

  108. Polu, S. K. (2018). Human activity recognition on smartphones using machine learning algorithms. International Journal for Innovative Research in Science & Technology, 5(6), 31–37.

    Google Scholar 

  109. Cruciani, F., Cleland, I., Nugent, C., McCullagh, P., Synnes, K., & Hallberg, J. (2018). Automatic annotation for human activity recognition in free living using a smartphone. Sensors, 18(7), 2203.

    Article  Google Scholar 

  110. Bulbul E, Cetin A, Dogru I. A.. (2018). Human activity recognition using smartphones. In: 2018 2nd international symposium on multidisciplinary studies and innovative technologies (ismsit) (pp. 1–6). IEEE.

    Google Scholar 

  111. Xu W., Pang Y., Yang Y., Liu Y. (2018). Human activity recognition based on convolutional neural network. In: 2018 24th international conference on pattern recognition (ICPR) (pp. 165–170). IEEE.

    Google Scholar 

  112. Zhou, B., Yang, J., & Li, Q. (2019). Smartphone-based activity recognition for indoor localization using a convolutional neural network. Sensors, 19(3), 621.

    Article  Google Scholar 

  113. Civitarese G., Presotto R., Bettini C. (2019). Context-driven active and incremental activity recognition. arXiv preprint arXiv:190603033.

    Google Scholar 

  114. Sravanthi, K., & Reddy, T. S. (2015). Applications of big data in various fields. International Journal of Computer Science and Information Technologies, 6(5), 4629–4632.

    Google Scholar 

  115. Sangkeun L., Gihyun G., Inbeom H., Sang-goo L. (2010). LifeLogOn: A practical lifelog system for building and exploiting lifelog ontology. In: IEEE international conference on sensor networks, ubiquitous, and trustworthy computing (SUTC) (pp. 367–373). IEEE.

    Google Scholar 

  116. Chen, C. P., & Zhang, C.-Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on big data. Information Sciences, 275, 314–347.

    Article  Google Scholar 

  117. Ganeriwal, S., Balzano, L. K., & Srivastava, M. B. (2008). Reputation-based framework for high integrity sensor networks. ACM Transactions on Sensor Networks (TOSN), 4(3), 15.

    Article  Google Scholar 

  118. Doherty A. R., Smeaton A. F. (2008). Automatically segmenting lifelog data into events. In: 2008 ninth international workshop on image analysis for multimedia interactive services (pp. 20–23). IEEE.

    Google Scholar 

  119. Bell C. G., Gemmell J.. (2009). Total recall: How the e-memory revolution will change everything. Dutton.

    Google Scholar 

  120. Tulving, E., & Murray, D. (1985). Elements of episodic memory. Canadian Psychology, 26(3), 235–238.

    Article  Google Scholar 

  121. Lehrer, P. M., Vaschillo, E., & Vaschillo, B. (2000). Resonant frequency biofeedback training to increase cardiac variability: Rationale and manual for training. Applied Psychophysiology and Biofeedback, 25(3), 177–191.

    Article  Google Scholar 

  122. Lehrer, P. M., Vaschillo, E., Vaschillo, B., Lu, S.-E., Scardella, A., Siddique, M., & Habib, R. H. (2004). Biofeedback treatment for asthma. Chest Journal, 126(2), 352–361.

    Article  Google Scholar 

  123. Bryant, R. E. (2011). Data-intensive scalable computing for scientific applications. Computing in Science & Engineering, 13(6), 25–33.

    Article  Google Scholar 

  124. Liggins, M., II, Hall, D., & Llinas, J. (2017). Handbook of multisensor data fusion: Theory and practice. CRC Press.

    Book  Google Scholar 

  125. Zafeiropoulos A., Konstantinou N., Arkoulis S., Spanos D. E., Mitrou N.. (2008). A semantic-based architecture for sensor data fusion. In: The second international conference on mobile ubiquitous computing, systems, services and technologies, UBICOMM '08 (pp. 116–121).

    Google Scholar 

  126. Jacquemard, T., Novitzky, P., O’Brolcháin, F., Smeaton, A. F., & Gordijn, B. (2014). Challenges and opportunities of lifelog technologies: A literature review and critical analysis. Science and Engineering Ethics, 20(2), 379–409.

    Article  Google Scholar 

  127. Langheinrich M.. (2001). Privacy by design—principles of privacy-aware ubiquitous systems. In: International conference on ubiquitous computing (pp. 273–291). Springer.

    Google Scholar 

  128. Cavoukian A. (2009). Privacy by design: The 7 foundation principles. Information and Privacy Commissioner Ontario, Canada 22.

    Google Scholar 

  129. Murata K., Orito Y. (2011). The right to forget/be forgotten. CEPE 2011: Crossing Boundaries. (p. 192).

    Google Scholar 

  130. Bell, G., & Gemmell, J. (2007). A digital life. Journal of Scientific American, 296(3), 58–65.

    Article  Google Scholar 

  131. Ellis, D. P., & Lee, K. (2006). Accessing minimal-impact personal audio archives. IEEE Multimedia, 13(4), 30–38.

    Article  Google Scholar 

  132. Wang Z, Hoffman M. D., Cook P. R., Li K. VFerret: content-based similarity search tool for continuous archived video. In: Proceedings of the 3rd ACM workshop on continuous archival and retrieval of personal experiences (pp. 19–26). ACM, (2006).

    Google Scholar 

  133. Lin W-H, Hauptmann A. (2006). Structuring continuous video recordings of everyday life using time-constrained clustering. In: Electronic Imaging 2006 (pp. 60730D–60739). International Society for Optics and Photonics.

    Google Scholar 

  134. Abowd G. D., Dey A. K., Brown P. J., Davies N, Smith M., Steggles P.(1999). Towards a better understanding of context and context-awareness. In: International symposium on handheld and ubiquitous computing (pp. 304–307). Springer.

    Google Scholar 

Download references

Acknowledgments

This research work is funded and sponsored by the Higher Education Commission (HEC), Pakistan. It is worthy to acknowledge the efforts, guidance, and valuable inputs of Prof. Corina Sas, School of Computing and Communication, Lancaster University, UK throughout this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaukat Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, S., Khusro, S., Khan, A., Khan, H. (2022). Smartphone-Based Lifelogging: Toward Realization of Personal Big Data. In: Guarda, T., Anwar, S., Leon, M., Mota Pinto, F.J. (eds) Information and Knowledge in Internet of Things. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-75123-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75123-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75122-7

  • Online ISBN: 978-3-030-75123-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics