Skip to main content

IoT-Based Pervasive Sentiment Analysis: A Fine-Grained Text Normalization Framework for Context Aware Hybrid Applications

  • Chapter
  • First Online:
Information and Knowledge in Internet of Things

Abstract

The Internet of Things (IoT) integrates physical objects in a networked real-world environment utilizing sensor-based software technologies in order to connect, share and exchange data with other relevant devices or platforms over the Internet. The contemporary business intelligence solutions encourage the IoT industry to reap benefits of big data dependent pervasive semantic orientation of public moods and relevant information shared in textual form using context aware integrated information management, by means of opinion mining through social media-based pervasive hybrid applications. Opinion mining (OM), also referred as pervasive sentiment analysis, is a process of extracting user orientation regarding products, services, businesses and other entities. It aims to classify an opinionative clue into positive or negative based on the sense and semantic category, which remains hidden from the human eye and non-pervasive applications.

The microblog and social media-based information is intrinsically hybrid in nature, which may comprise an ample amount of ubiquitous noise. The public opinions can be classified through supervised, semi-supervised, or unsupervised classifiers. Effective sentiment analysis is common to use in data science research, but unfortunately microblogging services like Twitter allows short text for communication, which compels online publishers to post unstructured and short form of opinions towards the target entities. Unstructured and short form of tweets makes it difficult to extract meaningful and accurate sentiment orientation. This limitation can be tackled through an effective preprocessing of text. Text normalization or preprocessing is the process of removing undesired symbols, tags and conversion of unstructured data into valuable information in order to make quality input for efficient sentiment analysis. It is observed that existing preprocessors and text normalizers ignored the informal nature of text especially slangs and subject tags due to scarcity of linguistic resources, which sometimes affects the sentiment accuracy. Therefore, this research proposes a framework for effective preprocessing of text in order to generate quality input. The proposed framework for an effective text preprocessing involves the following:

  1. (i).

    Extraction of text

  2. (ii).

    Removal of undesired tags

  3. (iii).

    Stop word removal

  4. (iv).

    Definition of slang terms

  5. (v).

    Stemming and lemmatization

  6. (vi).

    Part-of-speech tagging

  7. (vii).

    Coreference resolution

  8. (viii).

    Tag identification

Informal text (a.k.a. slang) and tag identification are the major contributions of proposed framework. Slangs and Tags play a significant role in the semantic orientation of sentiments and emotions. The performance of proposed framework is evaluated over Twitter dataset using Python natural language toolkit. Experimental setup revealed that the proposed system achieved promising results with an average F1-Measure of 71% and accuracy of 72.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dorsey, J. (2006). Just setting up my twttr. Twitter. Oldest Tweet ever from Twitter founder.

    Google Scholar 

  2. Dave, K., Lawrence, S., & Pennock, D. (2003). Mining the peanut gallery: Opinion extraction and semantic classification of product reviews. In Proceedings of the 12th international conference on World Wide Web (pp. 519–528).

    Chapter  Google Scholar 

  3. Nasukawa, T., & Yi, J. (2003). Sentiment analysis: Capturing favorability using natural language processing. In Proceedings of the 2nd international conference on Knowledge capture (pp. 70–77).

    Chapter  Google Scholar 

  4. Kim, S. M., & Hovy, E. (2005). Automatic detection of opinion bearing words and sentences. In Companion Volume to the Proceedings of the International Joint Conference on Natural Language Processing (IJCNLP), Vol. 8.

    Google Scholar 

  5. Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up?: Sentiment classification using machine learning techniques. In Proceedings of the ACL-02 conference on empirical methods in natural language Processing-Volume, Association for Computational Linguistics, Vol. 10 (pp. 79–86).

    Google Scholar 

  6. Wiebe, J. M. (1990). Identifying subjective characters in narrative. In Proceedings of the 13th conference on computational linguistics-association for computational linguistics, Vol. 2 (pp. 401–406).

    Google Scholar 

  7. Argamon, S., Bloom, K., Esuli, A., & Sebastiani, F. (2007). Automatically determining attitude type and force for sentiment analysis. In Language and technology conference (pp. 218–231). Springer.

    Google Scholar 

  8. Kim, S.-M., & Hovy, E. (2004). Determining the sentiment of opinions. In COLING 2004: Proceedings of the 20th International Conference on Computational Linguistics (pp. 1367–1373).

    Chapter  Google Scholar 

  9. Turney, P. D. (2002) .Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. arXiv preprint cs/0212032.

    Google Scholar 

  10. Raza, A. A., Asad, H., & Ashraf, J. (2017). A review on Urdu language parsing. Int. J. Adv. Comput. Sci. Appl, 8(4), 93–97.

    Google Scholar 

  11. Das, S. R. (2011). News analytics: Framework, techniques and metrics. In The handbook of news analytics in finance, Vol. 2.

    Google Scholar 

  12. Tan, L. K.-W., Na, J.-C., Theng, Y.-L., & Chang, K. (2011). Sentence-level sentiment polarity classification using a linguistic approach. In International Conference on Asian Digital Libraries (pp. 77–87). Springer.

    Google Scholar 

  13. Tetlock, P. C., Saar-Tsechansky, M., & Macskassy, S. (2008). More than words: Quantifying language to measure firms' fundamentals. The Journal of Finance, 63(3), 1437–1467.

    Article  Google Scholar 

  14. Sebastiani, F. (2002). Machine learning in automated text categorization. ACM computing surveys (CSUR), 34(1).

    Google Scholar 

  15. Das, S. R., & Chen, M. Y. (2007). Yahoo! for Amazon: Sentiment extraction from small talk on the web. Management Science, 53(9), 1375–1388.

    Article  Google Scholar 

  16. Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe, E. D., Gutierrez, J. B., & Kochut, K. (2017). A brief survey of text mining: Classification, clustering and extraction techniques. arXiv preprint arXiv:1707.02919.

    Google Scholar 

  17. Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe, E. D., Gutierrez, J. B., & Kochut, K. (2017). A brief survey of text mining: Classification, clustering and extraction techniques. arXiv preprint arXiv:1707.02919.

    Google Scholar 

  18. Hemalatha, I., Varma, G. P. S., & Govardhan, A. (2012). Preprocessing the informal text for efficient sentiment analysis. International Journal of Emerging Trends & Technology in Computer Science (IJETTCS), 1(2), 58–61.

    Google Scholar 

  19. Vijayarani, S., Ilamathi J., & Nithya. (2015). Preprocessing techniques for text mining-an overview. International Journal of Computer Science & Communication Networks, 5(1), 7–16.

    Google Scholar 

  20. Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., & Kappas, A. (2010). Sentiment strength detection in short informal text. Journal of the American Society for Information Science and Technology, 61(12), 2544–2558.

    Article  Google Scholar 

  21. Anne, C. (2017). Advanced text analytics and machine learning approach for document classification.

    Google Scholar 

  22. Kobayashi, N., Inui, K., & Matsumoto, Y. (2007). Extracting aspect-evaluation and aspect-of relations in opinion mining. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL) (pp. 1065–1074).

    Google Scholar 

  23. Tan, L. K.-W., Na, J.-C., Theng, Y.-L., & Chang, K. (2011). Sentence-level sentiment polarity classification using a linguistic approach. In International Conference on Asian Digital Libraries (pp. 77–87). Springer.

    Google Scholar 

  24. Manning, C., & Schutze, H. (1999). Foundations of statistical natural language processing. MIT press.

    MATH  Google Scholar 

  25. Duwairi, R., & El-Orfali, M. (2013). A study of the effects of preprocessing strategies on sentiment analysis for Arabic text. Journal of Information Science, 1, 1–14.

    Google Scholar 

  26. Ismail, H., Al-Ayyoub, M., Abdulla, N. A., Almodawar, A. A., Abooraig, R., & Mahyoub, N. A. (2015). Automatic Arabic text categorization: A comprehensive comparative study. Journal of Information Science., 41(1), 114–124.

    Article  Google Scholar 

  27. Singh, T., & Kumari, M. (2016). Role of text pre-processing in twitter sentiment analysis. Procedia Computer Science, 89(Supplement C), 549–554.

    Article  Google Scholar 

  28. Erik, C. (2016). Affective computing and sentiment analysis. IEEE intelligent systems., 31(2), 102–107.

    Article  Google Scholar 

  29. Angiani, G., Ferrari, L., Fontanini, T., Fornacciari, P., Iotti, E., Magliani, F., & Manicardi, S. A comparison between preprocessing techniques for sentiment analysis in twitter, (2016).

    Google Scholar 

  30. Hassan, K. F., Bashir, S., & Qamar, U. (2014). TOM: Twitter opinion mining framework using hybrid classification scheme. Decision Support Systems, 57, 245–257.

    Article  Google Scholar 

  31. Baroni, M., Chantree, F., Kilgarriff, A., & Sharoff, S. (2008). Cleaneval: A competition for cleaning web pages. In Lrec.

    Google Scholar 

  32. Gupta, S. (2006). Context-based content extraction of html documents. Columbia University.

    Google Scholar 

  33. Suhit, G., Kaiser, G. E., Grimm, P., Chiang, M. F., & Starren, J. (2005). Automating content extraction of html documents. World Wide Web., 8(2), 179–224.

    Article  Google Scholar 

  34. Mike, T., Buckley, K., & Paltoglou, G. (2011). Sentiment in Twitter events. Journal of the American Society for Information Science and Technology., 62(2), 406–418.

    Article  Google Scholar 

  35. Charniak, E. (1996). Statistical language learning. MIT press.

    Google Scholar 

  36. Turney, P. D. (2002). Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. arXiv preprint cs/0212032.

    Google Scholar 

  37. Dascalu, M., Dessus, P., Bianco, M., Trausan-Matu, S., & Nardy, A. (2014). Mining texts, learner productions and strategies with ReaderBench. In Educational Data Mining (pp. 345–377). Springer.

    Chapter  Google Scholar 

  38. Selvam, B., & Abirami, S. (2013). A survey on opinion mining framework. International Journal of Advanced Research in computer and communication Engineering, 2(9), 3544–3549.

    Google Scholar 

  39. Matsumoto, N. K. K. I. Y., & Fukushima, K. T. T. (2004). Collecting evaluative expressions for opinion extraction (pp. 596–605). Springer.

    Google Scholar 

  40. Chesley, P., Vincent, B., Xu, L., & Srihari, R. K. (2006). Using verbs and adjectives to automatically classify blog sentiment. Training, 580(263).

    Google Scholar 

  41. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.

    Article  MATH  Google Scholar 

  42. Sarwar, M. A., Ahmed, M., Habib, A., Khalid, M., Ali, M. A., Raza, M., Hussain, S., & Ahmed, G. (2020). Exploiting ontology recommendation using text categorization approach. IEEE Access. https://doi.org/10.1109/ACCESS.2020.3047364

  43. Ali, R. A., Asad, H., & Jawad, A. (2019). Semantic orientation based decision making framework for big data analysis of sporadic news events. Journal of Grid Computing., 17(2), 367–383.

    Article  Google Scholar 

  44. He, Y., & Zhou, D. (2011). Self-training from labeled features for sentiment analysis. Information Processing & Management., 47(4), 606–616.

    Article  Google Scholar 

  45. Loper, E., & Bird, S. (2002). NLTK: the natural language toolkit. arXiv preprint cs/0205028.

    Google Scholar 

  46. Hu, M., & Liu, B. (2004). Mining and summarizing customer reviews. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 168–177).

    Google Scholar 

  47. Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D., & Miller, K. J. (1990). Introduction to WordNet: An on-line lexical database. International Journal of Lexicography, 3(4), 235–244.

    Article  Google Scholar 

  48. Mohammad, S., Dunne, C., & Dorr, B. (2009). Generating high-coverage semantic orientation lexicons from overtly marked words and a thesaurus. In Proceedings of the 2009 conference on empirical methods in natural language processing (pp. 599–608).

    Google Scholar 

  49. Hatzivassiloglou, V., & McKeown, K. (1997). Predicting the semantic orientation of adjectives. In 35th annual meeting of the association for computational linguistics and 8th conference of the European chapter of the association for computational linguistics (pp. 174–181).

    Google Scholar 

  50. Fahrni, A., & Klenner, M. (2008). Old wine or warm beer: Target-specific sentiment analysis of adjectives, 60–63.

    Google Scholar 

  51. Maks, I., & Vossen, P. (2012). A lexicon model for deep sentiment analysis and opinion mining applications. Decision Support Systems, 53(4), 680–688.

    Article  Google Scholar 

  52. Maas, A., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011). Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the association for computational linguistics: Human language technologies (pp. 142–150).

    Google Scholar 

  53. Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies., 5(1), 1–167.

    Article  Google Scholar 

  54. Yessenalina, A., Yue, Y., & Cardie, C. (2010). Multi-level structured models for document-level sentiment classification. In Proceedings of the 2010 conference on empirical methods in natural language processing (pp. 1046–1056).

    Google Scholar 

  55. Pozzi, F. A., Fersini, E., & Messina, E. (2013). Bayesian model averaging and model selection for polarity classification. In International conference on application of natural language to information systems (pp. 189–200). Springer.

    Google Scholar 

  56. Täckström, O., & McDonald, R. (2011). Semi-supervised latent variable models for sentence-level sentiment analysis.

    Google Scholar 

  57. Yu, H., & Hatzivassiloglou, V. (2003). Towards answering opinion questions: Separating facts from opinions and identifying the polarity of opinion sentences. In Proceedings of the 2003 conference on Empirical methods in natural language processing (pp. 129–136).

    Chapter  Google Scholar 

  58. Liu, B., & Zhang, L. (2012). A survey of opinion mining and sentiment analysis. In Mining text data (pp. 415–463). Springer.

    Chapter  Google Scholar 

  59. Feldman, R. (2013). Techniques and applications for sentiment analysis. Communications of the ACM., 56(4), 82–89.

    Article  Google Scholar 

  60. Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python: Analyzing text with the natural language toolkit. O'Reilly Media, Inc..

    MATH  Google Scholar 

  61. Adnan, M., Asad, H., Jawad, A., Shafaq, M., & Ali, R. A. (2020). Scaffolding computer programming languages learning with tailored English vocabulary based on learners' performance states. Transactions on Scalable Information Systems, 20(27). https://doi.org/10.4108/eai.26-5-2020.166350

  62. Qiu, L., Kan, M. Y., & Chua, T. S. (2004). A public reference implementation of the rap anaphora resolution algorithm. arXiv preprint cs/0406031.

    Google Scholar 

  63. Lin, C., He, Y., Everson, R., & Ruger, S. (2011). Weakly supervised joint sentiment-topic detection from text. IEEE Transactions on Knowledge and Data engineering., 24(6), 1134–1145.

    Article  Google Scholar 

  64. Haddi, E., Liu, X., & Shi, Y. (2013). The role of text pre-processing in sentiment analysis. Procedia Computer Science, 17, 26–32.

    Article  Google Scholar 

  65. Duwairi, R., & El-Orfali, M. (2014). A study of the effects of preprocessing strategies on sentiment analysis for Arabic text. Journal of Information Science, 40(4), 501–513.

    Article  Google Scholar 

  66. Agarwal, A., Xie, B., Vovsha, I., Rambow, O., & Passonneau, R. J. (2011). Sentiment analysis of twitter data. In Proceedings of the workshop on language in social media (LSM 2011) (pp. 30–38).

    Google Scholar 

  67. Zhang, X., & Yue, W. T. (2019). Transformative value of the Internet of Things and pricing decisions. Electronic Commerce Research and Applications., 34.

    Google Scholar 

  68. Xiao, G., Geng, T., Lin, Z., Zhou, T., Li, X., Ahmed, S. H., & Jiang, D. (2020). Multi-modality sentiment analysis in social Internet of Things based on hierarchical attentions and CSATTCN with MBM network. IEEE Internet of Things Journal.

    Google Scholar 

  69. Joseph, N., Kar, A. K., Vigneswara Ilavarasan, P., & Ganesh, S. (2017). Review of discussions on internet of things (IoT): insights from twitter analytics. Journal of Global Information Management (JGIM)., 25(2), 38–51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asad Habib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Habib, A., Raza, A.A. (2022). IoT-Based Pervasive Sentiment Analysis: A Fine-Grained Text Normalization Framework for Context Aware Hybrid Applications. In: Guarda, T., Anwar, S., Leon, M., Mota Pinto, F.J. (eds) Information and Knowledge in Internet of Things. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-75123-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75123-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75122-7

  • Online ISBN: 978-3-030-75123-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics