Skip to main content

Genetic Algorithms for Scheduling Examinations

Part of the Lecture Notes in Networks and Systems book series (LNNS,volume 227)

Abstract

The range of problems to which genetic algorithms have been applied is quite broad. Timetable scheduling is a complex optimization problem. The purpose is to solve this problem by using genetic algorithms. There are two implementations for this problem: the first one solves the complete issue, and the second one divides the problem into two phases and solves the second phase. The results show that the second implementation has better solutions than the first one.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-75078-7_52
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-75078-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1.

References

  1. Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994)

    CrossRef  Google Scholar 

  2. Melanie, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  3. Abdoli, S., Hajati, F.: Offline signature verification using geodesic derivative pattern. In: 22nd Iranian Conference on Electrical Engineering (ICEE), Tehran, pp. 1018–1023 (2014)

    Google Scholar 

  4. Barzamini, R., Hajati, F., Gheisari, S., Motamadinejad, M.B.: Short term load forecasting using multi-layer perception and fuzzy inference systems for Islamic countries. J. Appl. Sci. 12(1), 40–47 (2012)

    CrossRef  Google Scholar 

  5. Shojaiee, F., Hajati, F.: Local composition derivative pattern for palmprint recognition. In: 22nd Iranian Conference on Electrical Engineering (ICEE), Tehran, pp. 965–970 (2014)

    Google Scholar 

  6. Hajati, F., Raie, AA., Gao, Y.: Pose-invariant 2.5 D face recognition using geodesic texture warping. In: 11th International Conference on Control Automation Robotics and Vision, Singapore, pp. 1837–1841 (2010)

    Google Scholar 

  7. Ayatollahi, F., Raie, A.A., Hajati, F.: Expression-invariant face recognition using depth and intensity dual-tree complex wavelet transform features. J. Electron. Imaging 24(2), 23–31 (2015)

    CrossRef  Google Scholar 

  8. Pakazad, S.K., Faez, K., Hajati, F.: Face detection based on central geometrical moments of face components. In: IEEE International Conference on Systems, Man and Cybernetics (SMC 2006), Taiwan (2006)

    Google Scholar 

  9. Hajati, F., Cheraghian, A., Gheisari, S., Gao, Y., Mian, A.S.: Surface geodesic pattern for 3D deformable texture matching. Pattern Recogn. 62, 21–32 (2017)

    CrossRef  Google Scholar 

  10. Hajati, F., Faez, K., Pakazad, S.K.: An efficient method for face localization and recognition in color images. In: IEEE International Conference on Systems, Man and Cybernetics (SMC 2006), Taiwan (2006)

    Google Scholar 

  11. Hajati, F., Raie, A.A., Gao, Y.: Pose-invariant multimodal (2D+ 3D) face recognition using geodesic distance map. J. Am. Sci. 7(10), 583–590 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshid Hajati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Hajati, F., Rezaee, A., Gheisari, S. (2021). Genetic Algorithms for Scheduling Examinations. In: Barolli, L., Woungang, I., Enokido, T. (eds) Advanced Information Networking and Applications. AINA 2021. Lecture Notes in Networks and Systems, vol 227. Springer, Cham. https://doi.org/10.1007/978-3-030-75078-7_52

Download citation