Skip to main content

Intelligent and Fuzzy Applications in Aircraft Handling Services with Aviation 4.0

  • Chapter
  • First Online:
Intelligent and Fuzzy Techniques in Aviation 4.0

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 372))

Abstract

This chapter introduces and analyses the state of the art of aircraft ground handling automation at airports. With the perspective of full automation of the air transport industry (Aviation 4.0), a management structure compatible with on-line automation of ground handling vehicles is proposed. This leads to identifying different decision problems to be tackled to generate safe and efficient automated ground handling operations. Solution algorithms are proposed where inherent uncertainty is modelled using fuzzy dual numbers demonstrating the feasibility of higher automation of ground handling through Aviation 4.0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnaldo Valdés, R., et al.: Industrial IoT solutions—remote monitoring & control of mission critical environments, Chapter Aviation 4.0: More Safety through Automation and Digitization (2018). https://doi.org/10.5772/intechopen.73688

  2. Beelaerts, W., et al.: Future airport turnaround ground handling processes. How to reduce the turnaround time of aircraft at the airport. In: 10th TRAIL Congress, Delft (2008). Available at: https://resolver.tudelft.nl/uuid:da6f9bb6-5306-4b73-af68-efe4e00fe01b

  3. Wu, C., Caves, R.: Aircraft operational costs and turnaround efficiency at airports. J. Air Transp. Manage. 6, 201–208 (2000). https://doi.org/10.1016/S0969-6997(00)00014-4

    Article  Google Scholar 

  4. Wu, C., Caves, R.: Modelling and simulation of aircraft turnaround operations at airports. Transp. Plan. Technol. 27(1), 25–46 (2004). https://doi.org/10.1080/0308106042000184445

    Article  Google Scholar 

  5. Alonso Tabares, D., Mora-Camino, F.: Aircraft ground operations: steps towards automation. CEAS Aeronaut. J. 10(3), 965–974 (2019). https://doi.org/10.1007/s13272-019-00390-5

    Article  Google Scholar 

  6. Desrosiers, J., et al.: Routing with time windows by column generation. Networks 14(4), 545–565 (1984). https://doi.org/10.1002/net.3230140406

    Article  MATH  Google Scholar 

  7. Kolen, A.W.J., et al.: Vehicle routing problem with time windows. Op. Res. 35, 266–273 (1987). https://doi.org/10.1287/opre.35.2.266

    Article  MATH  Google Scholar 

  8. Kohl, N., Madsen, O.: An optimization algorithm for the vehicle routing problem with time windows based on Lagrangean relaxation. Op. Res. 45(3), 395–406 (1997). https://doi.org/10.1287/opre.45.3.395

    Article  MATH  Google Scholar 

  9. Potvin, J.Y.: An exchange heuristic for routing problems with time windows. J. Op. Res. Soc. 46, 1422–1446 (1995). https://doi.org/10.2307/2584063

    Article  Google Scholar 

  10. Prins, C.: Efficient heuristics for the heterogeneous fleet multi-trip vrp with application to a large-scale real case. J. Math. Model. Alg. 1, 135–150 (2002). https://doi.org/10.1023/A:1016516326823

    Article  MathSciNet  MATH  Google Scholar 

  11. Valmiki, P., et al.: A study on simulation methods for AGV fleet size estimation in a FMS. Mater. Today Proc. 5, 3994–3999 (2018). Available at: https://isiarticles.com/bundles/Article/pre/pdf/86906.pdf

  12. Nageswararao, M., et al.: Simultaneous scheduling of machines and AGV in FMS with minimization of tardiness criterion. Proc. Mater. Sci. 5, 1492–1501 (2014). https://doi.org/10.1016/j.mspro.2014.07.336

    Article  Google Scholar 

  13. Nouri, H.E., et al.: Simultaneous scheduling of machines and transport robots in flexible job shop environment using hybrid metaheuristics based on clustered holonic multiagent model. Comput. Ind. Eng. 102, 488–501 (2016). https://doi.org/10.1016/j.cie.2016.02.024

    Article  Google Scholar 

  14. Kuhn, K., Loth, S.: Airport Service Vehicle Scheduling, Eighth USA/ Europe Air Traffic Management Research and Development Seminar (ATM) (2009). Available at: https://www.researchgate.net/publication/225002946_Airport_Service_Vehicle_Scheduling

  15. Mao, X., et al.: Stable multi-project scheduling of airport ground handling services by heterogeneous agents (2007). Available at: https://dke.maastrichtuniversity.nl/nico.roos/wp-content/uploads/2016/01/MRS09AAMAS.pdf

  16. Fitouri-Trabelsi, S.: Contribution to the organization of ground handling management at airports. Ph.D. Thesis (2013). Available at: https://www.theses.fr/2013INPT0118

  17. Padrón Astorga, S.: A multi-objective optimization approach to the ground handling scheduling problem, Ph.D. Thesis (2014). Available at: https://ddd.uab.cat/record/128757

  18. Andreatta, G., de Giovanni, L.: A fast heuristic for airport ground-service equipment-and-staff allocation, Proc. Soc. Behav. Sci. 108 (2014). https://doi.org/10.1016/j.sbspro.2013.12.817

  19. Fitouri-Trabelsi, S., et al.: An operational approach for ground handling management at airports with imperfect information. In: ICIEOM 2013, 19th International Conference on Industrial Engineering and Operations Management (2013). Available at: https://hal-enac.archives-ouvertes.fr/hal-00925045/document

  20. Eurocontrol: Airport CDM Implementation Manual v5.0 (2017). Available at: https://www.eurocontrol.int/sites/default/files/publication/files/airport-cdm-manual-2017.PDF

  21. Cordreau, J.F.: A branch-and-cut algorithm for the dial a ride problem. Op. Res. 54, 573–586 (2006). https://doi.org/10.1287/opre.1060.0283

    Article  MathSciNet  Google Scholar 

  22. Mora-Camino, F., Nunes, C.A.: Fuzzy dual numbers: theory and applications. Stud. Fuzziness Soft Comput. (2018). https://doi.org/10.1007/978-3-319-65418-8

    Article  MATH  Google Scholar 

  23. Alonso Tabares, D., et al.: A multi-time scale management structure for airport ground handling automation. J. Air Transp. Manage. 90(C) (2020)

    Google Scholar 

  24. https://doi.org/10.1016/j.jairtraman.2020.101959

  25. Drljaca, M., et al.: The role and influence of industry 4.0. in airport operations in the context of COVID-19. Sustainability (2020). https://doi.org/10.3390/su122410614

  26. Alonso Tabares, D.: An airport operations proposal for a pandemic-free air travel. J. Air Transp. Manage. 90(C) (2020). https://doi.org/10.1016/j.jairtraman.2020.101943

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alonso Tabares, D., Mora-Camino, F. (2022). Intelligent and Fuzzy Applications in Aircraft Handling Services with Aviation 4.0. In: Kahraman, C., Aydın, S. (eds) Intelligent and Fuzzy Techniques in Aviation 4.0. Studies in Systems, Decision and Control, vol 372. Springer, Cham. https://doi.org/10.1007/978-3-030-75067-1_8

Download citation

Publish with us

Policies and ethics