Skip to main content

A Conceptual Framework for Estimating the Remaining Operational Lifetime of the Recovered Components from End of Life Aircraft Using Fuzzy Simulation and Digital Twin

  • Chapter
  • First Online:
Intelligent and Fuzzy Techniques in Aviation 4.0

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 372))

Abstract

Industry 4.0 promotes product lifecycle management and promises to provide digital models and integrating product lifecycle data. Aviation 4.0 addresses the implications of the fourth industrial revolution in the operation and management of aircraft during their lifecycles. The management of the end of life (EoL) phase of aircraft is essential and contains uncertainty data. The revenue from recovered parts plays an important role in the sustainability of the EoL aircraft business. Estimating the operational life of high-value parts is critical in EoL decision-making. This chapter proposes a framework including use of fuzzy simulation and digital twins to estimate the remaining useful life (RUL) of recovered parts. The proposed framework contains three digital models including the digital twins of parts health management, disassembly process, and recovered parts. A fuzzy intelligent decision-making model generates the rules based on sensor measurements and operational settings for the estimation of the RUL of a part. The application of the model related to aircraft engines is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aivaliotis, P., Georgoulias, K., Arkouli, Z., Makris, S.: Methodology for enabling digital twin using advanced physics-based modelling in predictive maintenance. Proc. CIRP 81, 417–422 (2019)

    Article  Google Scholar 

  2. Atli, O., Kahraman, C.: Aircraft maintenance planning using fuzzy critical path analysis. Int. J. Comput. Intell. Syst. 5(3), 553–567 (2012)

    Article  Google Scholar 

  3. Azadeh, A., Sheikhalishahi, M., Khalili, S.M., Firoozi, M.: An integrated fuzzy simulation–fuzzy data envelopment analysis approach for optimum maintenance planning. Int. J. Comput. Integr. Manuf. 27(2), 181–199 (2014)

    Article  Google Scholar 

  4. Bezdec, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)

    Book  Google Scholar 

  5. Bouarfa, S., Doğru, A., Arizar, R., Aydoğan, R., Serafico, J.: Towards automated aircraft maintenance inspection. A use case of detecting aircraft dents using Mask R-CNN. In: AIAA Scitech 2020 Forum, p. 0389 (2020)

    Google Scholar 

  6. Büyüközkan, G., Feyzioğlu, O., Havle, C.A.: Analysis of success factors in aviation 4.0 using integrated intuitionistic fuzzy MCDM methods. In: International Conference on Intelligent and Fuzzy Systems, pp. 598–606. Springer, Cham (2019)

    Google Scholar 

  7. Ceruti, A., Marzocca, P., Liverani, A., Bil, C.: Maintenance in aeronautics in an Industry 4.0 context: the role of augmented reality and additive manufacturing. J. Comput. Des. Eng. 6(4), 516–526 (2019)

    Google Scholar 

  8. Chemweno, P.K., Pintelon, L.: Towards e-maintenance: an exploration approach for aircraft maintenance data. In: Applications and Challenges of Maintenance and Safety Engineering in Industry 4.0, pp. 189–212. IGI Global (2020)

    Google Scholar 

  9. Demirci, S., Hajiyev, C., Schwenke, A.: Fuzzy logic‐based automated engine health monitoring for commercial aircraft. Aircr. Eng. Aerosp. Technol. (2008)

    Google Scholar 

  10. Deng, Q., Santos, B.F., Curran, R.: A practical dynamic programming based methodology for aircraft maintenance check scheduling optimization. Eur. J. Oper. Res. 281(2), 256–273 (2020)

    Article  MathSciNet  Google Scholar 

  11. Dinis, D., Barbosa-Póvoa, A., Teixeira, A.P.: Valuing data in aircraft maintenance through big data analytics: a probabilistic approach for capacity planning using Bayesian networks. Comput. Ind. Eng. 128, 920–936 (2019)

    Article  Google Scholar 

  12. Elsayed, E.A.: Mean residual life and optimal operating conditions for industrial furnace tubes. In: Case Studies in Reliability and Maintenance, pp. 497–515 (2003)

    Google Scholar 

  13. Errandonea, I., Beltrán, S., Arrizabalaga, S.: Digital twin for maintenance: a literature review. Comput. Ind. 123, 103316 (2020)

    Article  Google Scholar 

  14. Fornlöf, V.: Improved remaining useful life estimations for on-condition parts in aircraft engines. Doctoral dissertation, University of Skövde (2016)

    Google Scholar 

  15. Gholizadeh, H., Javadian, N., Fazlollahtabar, H.: An integrated fuzzy-genetic failure mode and effect analysis for aircraft wing reliability. Soft Comput. 1–12 (2020)

    Google Scholar 

  16. Guyon, I., Amine, R., Tamayo, S., Fontane, F.: Analysis of the opportunities of industry 4.0 in the aeronautical sector. In: 10th International conference on complexity, Informatics and Cybernetics: IMCIC2019 (2019)

    Google Scholar 

  17. Hazbon, O., Gutierrez, L., Bil, C., Napolitano, M., Fravolini, M.: Digital twin concept for aircraft system failure detection and correction. In: AIAA Aviation 2019 Forum, p. 2887 (2019)

    Google Scholar 

  18. IATA Report. https://www.iata.org/contentassets/ffbed17ac843465aad778867cb23c45c/bipad.pdf (2018)

  19. Keivanpour, S., Kadi, D.A.: A sustainable approach to aircraft engine maintenance. IFAC-PapersOnLine 48(3), 977–982 (2015)

    Article  Google Scholar 

  20. Keivanpour, S., Kadi, D.A.: The effect of “internet of things” on aircraft spare parts inventory management. IFAC-PapersOnLine 52(13), 2343–2347 (2019)

    Article  Google Scholar 

  21. Keivanpour, S.: End of Life Management of Complex Products in an Industry 4.0 Driven and Customer-Centric Paradigm: A Research Agenda. Accepted in MOSIM 2020 (2020)

    Google Scholar 

  22. Keivanpour, S., Kadi, D.A., Mascle, Ch.: The role of estimation of residual life time. In: End of Life Aircraft Components Decision Making. Sustainability 2015, Sponsored by AHS International’s Montréal-Ottawa Chapter, September 22–24, Hotel Bonaventure, Montréal, Québec, Canada (September 2015)

    Google Scholar 

  23. Khan, S., Farnsworth, M., McWilliam, R., Erkoyuncu, J.: On the requirements of digital twin-driven autonomous maintenance. Annu. Rev. Control (2020)

    Google Scholar 

  24. Latorella, K.A., Prabhu, P.V.: A review of human error in aviation maintenance and inspection. Int. J. Ind. Ergon. 26(2), 133–161 (2000)

    Article  Google Scholar 

  25. Li, S.G., Kuo, X.: The inventory management system for automobile spare parts in a central warehouse. Expert Syst. Appl. 34(2), 1144–1153 (2008)

    Article  Google Scholar 

  26. Liu, Y., Wang, T., Zhang, H., Cheutet, V., Shen, G.: The design and simulation of an autonomous system for aircraft maintenance scheduling. Comput. Ind. Eng. 137, 106041 (2019)

    Article  Google Scholar 

  27. Liu, Y., Wang, T., Zhang, H., Cheutet, V.: Simulation-based fuzzy-rough nearest neighbour fault classification and prediction for aircraft maintenance. J. Simul. 1–15 (2019)

    Google Scholar 

  28. Lu, Y., Liu, C., Kevin, I., Wang, K., Huang, H., Xu, X.: Digital Twin-driven smart manufacturing: connotation, reference model, applications and research issues. Robot. Comput.-Integr. Manuf. 61, 101837 (2020)

    Article  Google Scholar 

  29. Lu, K.Y., Sy, C.C.: A real-time decision-making of maintenance using fuzzy agent. Expert Syst. Appl. 36(2), 2691–2698 (2009)

    Article  Google Scholar 

  30. Lu, Z., Sun, Y.C.: Maintainability virtual evaluation method based on fuzzy multiple attribute decision making theory for civil aircraft system. In: 2009 8th International Conference on Reliability, Maintainability and Safety, pp. 684–689. IEEE, New York (July 2009)

    Google Scholar 

  31. Lu, Z., Zhou, J., Li, N.: Maintainability fuzzy evaluation based on maintenance task virtual simulation for aircraft system. Eksploatacja i Niezawodność 17(4) (2015)

    Google Scholar 

  32. Mandolla, C., Petruzzelli, A.M., Percoco, G., Urbinati, A.: Building a digital twin for additive manufacturing through the exploitation of blockchain: a case analysis of the aircraft industry. Comput. Ind. 109, 134–152 (2019)

    Article  Google Scholar 

  33. Mi, S., Feng, Y., Zheng, H., Wang, Y., Gao, Y., Tan, J.: Prediction maintenance integrated decision-making approach supported by digital twin-driven cooperative awareness and interconnection framework. J. Manuf. Syst. (2020)

    Google Scholar 

  34. Nowlan, F.S., Heap, H.F.: Reliability-Centered Maintenance. United Air Lines Inc., San Francisco, CA (1978)

    Google Scholar 

  35. Okoh, C., Roy, R., Mehnen, J., Redding, L.: Overview of remaining useful life prediction techniques in through-life engineering services. Proc. CIRP 16, 158–163 (2014)

    Article  Google Scholar 

  36. Rahman, S.M., Perry, N., Müller, J.M., Kim, J., Laratte, B.: End-of-life in industry 4.0: ignored as before? Resour. Conserv. Recycl. 154, 104539 (2020)

    Google Scholar 

  37. Ramudhin, A., Paquet, M., Artiba, A., Dupré, P., Varvaro, D., Thomson, V.: A generic framework to support the selection of an RFID-based control system with application to the MRO activities of an aircraft engine manufacturer. Prod. Plann. Control 19, 183–196 (2008)

    Article  Google Scholar 

  38. Saxena, A., Goebel, K.: PHM08 Challenge Data Set. NASA Ames Prognostics Data Repository (https://ti.arc.nasa.gov/project/prognostic-data-repository), NASA Ames Research Center, Moffett Field, CA (2008)

  39. Si, X.S., Wang, W., Hu, C.H., Zhou, D.H.: Remaining useful life estimation—a review on the statistical data driven approaches. Eur. J. Oper. Res. 213(1), 1–14 (2011)

    Article  MathSciNet  Google Scholar 

  40. Tyncherov, T., Rozkova, L.: Aircraft lifecycle digital twin for defects prediction accuracy improvement. In: International Conference on Reliability and Statistics in Transportation and Communication, pp. 54–63, Springer, Cham (October 2019)

    Google Scholar 

  41. Utzig, S., Kaps, R., Azeem, S.M., Gerndt, A.: Augmented reality for remote collaboration in aircraft maintenance tasks. In: 2019 IEEE Aerospace Conference, pp. 1–10. IEEE, New York (March 2019)

    Google Scholar 

  42. Valdés, R.A., Comendador, V.F.G., Sanz, A.R., Castán, J.P.: Aviation 4.0: more safety through automation and digitization. In: Aircraft Technology. IntechOpen (2018)

    Google Scholar 

  43. Wang, J., Ye, L., Gao, R.X., Li, C., Zhang, L.: Digital twin for rotating machinery fault diagnosis in smart manufacturing. Int. J. Prod. Res. 57(12), 3920–3934 (2019)

    Article  Google Scholar 

  44. Xiongzi, C., Jinsong, Y., Diyin, T. Yingxun, W.: Remaining useful life prognostic estimation for aircraft subsystems or components: a review. In: 2011 10th International Conference on Electronic Measurement & Instruments (ICEMI), pp. 94–98. IEEE, New York (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira Keivanpour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Keivanpour, S. (2022). A Conceptual Framework for Estimating the Remaining Operational Lifetime of the Recovered Components from End of Life Aircraft Using Fuzzy Simulation and Digital Twin. In: Kahraman, C., Aydın, S. (eds) Intelligent and Fuzzy Techniques in Aviation 4.0. Studies in Systems, Decision and Control, vol 372. Springer, Cham. https://doi.org/10.1007/978-3-030-75067-1_13

Download citation

Publish with us

Policies and ethics