Skip to main content

Control of Underactuated Marine Vehicles

  • Chapter
  • First Online:
Control of Marine Vehicles

Abstract

The kinematics and dynamics of underactuated marine vehicles must be taken into account during control design, significantly more so than when developing controllers for fully-actuated vehicles. Here, we first present some of the specialized terminology used to define the main features of underactuated systems, the types of constraints (e.g. velocity and acceleration constraints) that make a vehicle underactuated, and the dynamics of underactuated marine vehicles. Then techniques for the stabilization, path following control and trajectory tracking control of nonholonomic surface vessels are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A neighborhood V of a point \(\mathbf {x}_0\) is a set of points containing \(\mathbf {x}_0\) where one can move some amount in any direction away from \(\mathbf {x}_0\) without leaving the set.

  2. 2.

    One can think of an open set as a collection of points, like a sphere in three dimensions, about a given point that does not include a boundary. E.g. the set of points \(x^2 + y^2 + z^2 < 4\) is an open set about the origin \(x = y = z = 0\). It is bounded by the sphere \(\sqrt{x^2 + y^2 + z^2} = 2\), which is a closed set.

  3. 3.

    See Sect. 8.4.1 for brief definitions of the drift and control terms in a closed loop system.

  4. 4.

    The image of a function is the set of all of the output values it may produce.

  5. 5.

    An open neighborhood of a point \(\mathbf {x}_e\) is an open set containing \(\mathbf {x}_e\).

References

  1. Ashrafiuon, H., Nersesov, S., Clayton, G.: Trajectory tracking control of planar underactuated vehicles. IEEE Trans. Autom. Control 62(4), 1959–1965 (2017)

    Article  MathSciNet  Google Scholar 

  2. Belleter, D., Maghenem, M.A., Paliotta, C., Pettersen, K.Y.: Observer based path following for underactuated marine vessels in the presence of ocean currents: a global approach. Automatica 100, 123–134 (2019)

    Article  MathSciNet  Google Scholar 

  3. Bertaska, I., von Ellenrieder, K.: Experimental evaluation of supervisory switching control for unmanned surface vehicles. IEEE J. Oceanic Eng. 44(1), 7–28 (2019)

    Google Scholar 

  4. Borhaug, E., Pavlov, A., Pettersen, K.Y.: Cross-track formation control of underactuated surface vessels. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 5955–5961. IEEE (2006)

    Google Scholar 

  5. Breivik, M., Fossen, T.I.: Guidance laws for autonomous underwater vehicles. Underwater Veh. 51–76 (2009)

    Google Scholar 

  6. Brockett, R.W.: Asymptotic stability and feedback stabilization. In: Brockett, R.W., Millman, R.S., Sussmann, H.J., (eds.) Differential Geometric Control Theory: Proceedings of the conference held at Michigan Technological University, June 28–July 2, 1982, vol. 27, pp. 181–191. Birkhauser, Boston (1983)

    Google Scholar 

  7. Cho, N., Kim, Y., Park, S.: Three-dimensional nonlinear differential geometric path-following guidance law. J. Guid. Control. Dyn. 38(12), 2366–2385 (2015)

    Article  Google Scholar 

  8. De Luca, A., Oriolo, G.: Modelling and control of nonholonomic mechanical systems. In: Kinematics and Dynamics of Multi-body Systems, pp. 277–342. Springer, Berlin (1995)

    Google Scholar 

  9. Egeland, O., Berglund, E.: Control of an underwater vehicle with nonholonomic acceleration constraints. IFAC Proc. 27(14), 959–964 (1994)

    Article  Google Scholar 

  10. Fossen, T.I.: Handbook of Marine Craft Hydrodynamics and Motion Control. Wiley, New York (2011)

    Book  Google Scholar 

  11. Fossen, T.I., Pettersen, K.Y.: On uniform semiglobal exponential stability (usges) of proportional line-of-sight guidance laws. Automatica 50(11), 2912–2917 (2014)

    Article  MathSciNet  Google Scholar 

  12. Ge, S.S., Sun, Z., Lee, T.H., Spong, M.W.: Feedback linearization and stabilization of second-order non-holonomic chained systems. Int. J. Control 74(14), 1383–1392 (2001)

    Article  MathSciNet  Google Scholar 

  13. Yuri A Kapitanyuk, Anton V Proskurnikov, and Ming Cao. A guiding vector-field algorithm for path-following control of nonholonomic mobile robots. IEEE Trans. Control Syst. Technol. 26(4), 1372–1385 (2017)

    Google Scholar 

  14. Laiou, M.-C., Astolfi, A.: Discontinuous control of high-order generalized chained systems. Syst. Control Lett. 37(5), 309–322 (1999)

    Article  MathSciNet  Google Scholar 

  15. Laiou, M.-C., Astolfi, A.: Local transformations to generalized chained forms. Process Syst. Eng. RWTH Aachen Univ. Templergraben 55, 1–14 (2004)

    Google Scholar 

  16. Mazenc, F., Pettersen, K., Nijmeijer, H.: Global uniform asymptotic stabilization of an underactuated surface vessel. IEEE Trans. Autom. Control 47(10), 1759–1762 (2002)

    Article  MathSciNet  Google Scholar 

  17. M’Closkey, R.T., Murray, R.M.: Nonholonomic systems and exponential convergence: some analysis tools. In Proceedings of 32nd IEEE Conference on Decision and Control, pp. 943–948. IEEE (1993)

    Google Scholar 

  18. Murray, R.M., Sastry, S.S.: Nonholonomic motion planning: steering using sinusoids. IEEE Trans. Autom. Control 38(5), 700–716 (1993)

    Article  MathSciNet  Google Scholar 

  19. Murray, R.M., Sastry, S.S.: Steering nonholonomic systems in chained form. In Proceedings of the 30th IEEE Conference on Decision and Control, pp. 1121–1126. IEEE (1991)

    Google Scholar 

  20. Oliveira, T., Aguiar, A.P., Encarnacao, P.: Moving path following for unmanned aerial vehicles with applications to single and multiple target tracking problems. IEEE Trans. Robot. 32(5), 1062–1078 (2016)

    Article  Google Scholar 

  21. Papoulias, F.A.: Bifurcation analysis of line of sight vehicle guidance using sliding modes. Int. J. Bifurc. Chaos 1(04), 849–865 (1991)

    Article  MathSciNet  Google Scholar 

  22. Pettersen, K.Y., Egeland, O.: Exponential stabilization of an underactuated surface vessel. In Proceedings of 35th IEEE Conference on Decision and Control, vol. 1, pp. 967–972. IEEE (1996)

    Google Scholar 

  23. Pettersen, K.Y., Mazenc, F., Nijmeijer, H.: Global uniform asymptotic stabilization of an underactuated surface vessel: Experimental results. IEEE Trans. Control Syst. Technol. 12(6), 891–903 (2004)

    Article  Google Scholar 

  24. Reis, M.F., Jain, R.P., Aguiar, A.P., de Sousa, J.B.: Robust moving path following control for robotic vehicles: Theory and experiments. IEEE Robot. Autom. Lett. 4(4), 3192–3199 (2019)

    Article  Google Scholar 

  25. Mahmut Reyhanoglu, Arjan van der Schaft, N Harris McClamroch, and Ilya Kolmanovsky. Nonlinear control of a class of underactuated systems. In: Proceedings of the 35th IEEE Conference on Decision and Control, vol. 2, pp. 1682–1687. IEEE (1996)

    Google Scholar 

  26. Reyhanoglu, M., van der Schaft, A., McClamroch, N.H., Kolmanovsky, I.: Dynamics and control of a class of underactuated mechanical systems. IEEE Trans. Autom. Control 44(9), 1663–1671 (1999)

    Article  MathSciNet  Google Scholar 

  27. SNAME. Nomenclature for treating the motion of a submerged body through a fluid: Report of the American Towing Tank Conference. Technical and Research Bulletin 1–5, Society of Naval Architects and Marine Engineers (1950)

    Google Scholar 

  28. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, New York (2006)

    Google Scholar 

  29. von Ellenrieder, K.D.: Stable backstepping control of marine vehicles with actuator rate limits and saturation. IFAC-PapersOnLine 51(29), 262–267 (2018)

    Article  Google Scholar 

  30. Wichlund, K.Y., Sørdalen, O.J., Egeland, O.: Control of vehicles with second-order nonholonomic constraints: underactuated vehicles. In: Proceedings of the 3rd European Control Conference. Citeseer (1995)

    Google Scholar 

  31. Zheng, Z.: Moving path following control for a surface vessel with error constraint. Automatica 118, 109040 (2020)

    Article  MathSciNet  Google Scholar 

  32. Zheng, Z., Sun, L., Xie, L.: Error-constrained LOS path following of a surface vessel with actuator saturation and faults. IEEE Trans. Syst., Man, Cybernet.: Syst. 48(10), 1794–1805 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Dietrich von Ellenrieder .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

von Ellenrieder, K.D. (2021). Control of Underactuated Marine Vehicles. In: Control of Marine Vehicles. Springer Series on Naval Architecture, Marine Engineering, Shipbuilding and Shipping, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-75021-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75021-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75020-6

  • Online ISBN: 978-3-030-75021-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics