Skip to main content

Energy Storage Scheduling: A QUBO Formulation for Quantum Computing

  • Conference paper
  • First Online:
Innovations for Community Services (I4CS 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1404))

Included in the following conference series:

Abstract

Energy storage systems and home energy management and control systems will play an important role in reaching the Paris Agreement on climate change. Underlying scheduling mechanisms will lead to a computational burden when the size of the systems and the size of the control space increase. One, upcoming alternative to overcome this computational burden is quantum computing. Here a quantum computer is used to solve the scheduling problems. In this paper an approach of using the D-Wave quantum annealing to solve an energy storage scheduling problem is proposed and used to solve a small example. The example shows the potential that quantum computing can have in this area in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Quote from Jeremy O’Brien (2016).

  2. 2.

    https://support.dwavesys.com/hc/en-us/community/posts/360034852633-High-Chain-Break-Fractions.

References

  1. Arantegui, R.L., Jäger-Waldau, A.: Photovoltaics and wind status in the European Union after the Paris Agreement. Renew. Sustain. Energ. Rev. 81, 2460–2471 (2018)

    Article  Google Scholar 

  2. Belyaev, L.S.: Pay-off matrix technique. Energy 15(7/8), 631–643 (1990)

    Article  Google Scholar 

  3. Coffrin, C.J.: Challenges with chains: testing the limits of a D-Wave quantum Annealer for discrete optimization. Technical Report. Los Alamos National Laboratory, USA (2019)

    Google Scholar 

  4. Croes, N., Phillipson, F., Schreuder, M.: Tactical congestion management: the optimal mix of decentralised generators in a district. In: Integration of Renewables into the Distribution Grid, CIRED 2012 Workshop, pp. 1–4. IET (2012)

    Google Scholar 

  5. Cuaresma, J.C., Hlouskova, J., Kossmeier, S., Obersteiner, M.: Forecasting electricity spot-prices using linear univariate time-series models. Appl. Energ. 77(1), 87–106 (2004)

    Article  Google Scholar 

  6. De Musgrove, A.: A linear programming analysis of liquid-furl production and use options for Australia. Energy 9, 281–302 (1984)

    Article  Google Scholar 

  7. de Wolf, R.: The potential impact of quantum computers on society. Ethics Inf. Technol. 19(4), 271–276 (2017). https://doi.org/10.1007/s10676-017-9439-z

    Article  Google Scholar 

  8. Esmaili, M., Firozjaee, E.C., Shayanfar, H.A.: Optimal placement of distributed generations considering voltage stability and power losses with observing voltage-related constraints. Appl. Energ. 113, 1252–1260 (2014)

    Article  Google Scholar 

  9. Faisal, M., Hannan, M., Ker, P.J., Rahman, M.A., Begum, R., Mahlia, T.: Particle swarm optimised fuzzy controller for charging-discharging and scheduling of battery energy storage system in mg applications. Energ. Rep. 6, 215–228 (2020)

    Google Scholar 

  10. Foster, R.C., Weaver, B., Gattiker, J.: Applications of quantum annealing in statistics. arXiv preprint arXiv:1904.06819 (2019)

  11. Glover, F., Kochenberger, G., Du, Y.: A tutorial on formulating and using QUBO models. arXiv preprint arXiv:1811.11538 (2018)

  12. Haider, H.T., See, O.H., Elmenreich, W.: Dynamic residential load scheduling based on adaptive consumption level pricing scheme. Electri. Power Syst. Res. 133, 27–35 (2016)

    Article  Google Scholar 

  13. Hemmati, R., Saboori, H.: Stochastic optimal battery storage sizing and scheduling in home energy management systems equipped with solar photovoltaic panels. Energ. Buildings 152, 290–300 (2017)

    Article  Google Scholar 

  14. Hiremath, R., Shikha, S., Ravindranath, N.: Decentralized energy planning; modeling and application - a review. Renew. Sustain. Energ. Rev. 11, 729–752 (2007)

    Article  Google Scholar 

  15. Jebaraj, S., Iniyan, S.: A review of energy models. Renew. Sustain. Energ. Rev. 10(4), 281–311 (2006)

    Article  Google Scholar 

  16. Kang, J., Ng, T.S., Su, B.: Optimizing electricity mix for CO2 emissions reduction: a robust input-output linear programming model. Eur. J. Oper. Res. 287(1), 280–292 (2020)

    Google Scholar 

  17. Khalil, A.J., Barhoom, A.M., Abu-Nasser, B.S., Musleh, M.M., Abu-Naser, S.S.: Energy efficiency predicting using artificial neural network (2019)

    Google Scholar 

  18. Labys, W.C., Kuczmowski, T., Infanger, G.: Special programming models. Energy 15(7/8), 607–617 (1990)

    Article  Google Scholar 

  19. Li, Y., Yang, Z., Li, G., Zhao, D., Tian, W.: Optimal scheduling of an isolated microgrid with battery storage considering load and renewable generation uncertainties. IEEE Trans. Ind. Electron. 66(2), 1565–1575 (2018)

    Article  Google Scholar 

  20. Longe, O.M., Ouahada, K., Rimer, S., Harutyunyan, A.N., Ferreira, H.C.: Distributed demand side management with battery storage for smart home energy scheduling. Sustainability 9(1), 120 (2017)

    Article  Google Scholar 

  21. Lucas, A.: Ising formulations of many np problems. Front. Phys. 2, 5 (2014)

    Article  Google Scholar 

  22. Mashhour, E., Moghaddas-Tafreshi, S.: Integration of distributed energy resources into low voltage grid: a market-based multiperiod optimization model. Electr. Power Syst. Res. 80(4), 473–480 (2009)

    Article  Google Scholar 

  23. Merdanoğlu, H., Yakıcı, E., Doğan, O.T., Duran, S., Karatas, M.: Finding optimal schedules in a home energy management system. Electr. Power Syst. Res. 182, 106229 (2020)

    Google Scholar 

  24. Mohsenian-Rad, A.H., Wong, V.W., Jatskevich, J., Schober, R., Leon-Garcia, A.: Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid. IEEE Trans. Smart Grid 1(3), 320–331 (2010)

    Article  Google Scholar 

  25. Neumann, N., Phillipson, F., Versluis, R.: Machine learning in the quantum era. Digitale Welt 3(2), 24–29 (2019)

    Article  Google Scholar 

  26. Pedrasa, M.A.A., Spooner, T.D., MacGill, I.F.: Coordinated scheduling of residential distributed energy resources to optimize smart home energy services. IEEE Trans. Smart Grid 1(2), 134–143 (2010)

    Article  Google Scholar 

  27. Phillipson, F.: Multi objective approach for tactical capacity management of distributed generation. In: Eichler, G., Erfurth, C., Fahrnberger, G. (eds.) I4CS 2017. CCIS, vol. 717, pp. 155–166. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60447-3_11

    Chapter  Google Scholar 

  28. Piattini, M., et al.: The Talavera manifesto for quantum software engineering and programming. In: QANSWER, pp. 1–5 (2020)

    Google Scholar 

  29. Pilz, M., Al-Fagih, L., Pfluegel, E.: Energy storage scheduling with an advanced battery model: a game-theoretic approach. Inventions 2(4), 30 (2017)

    Article  Google Scholar 

  30. Resch, S., Karpuzcu, U.R.: Quantum computing: an overview across the system stack. arXiv preprint arXiv:1905.07240 (2019)

  31. Rieffel, E.G., Venturelli, D., O’Gorman, B., Do, M.B., Prystay, E.M., Smelyanskiy, V.N.: A case study in programming a quantum Annealer for hard operational planning problems. Quantum Inf. Process. 14(1), 1–36 (2014). https://doi.org/10.1007/s11128-014-0892-x

    Article  MATH  Google Scholar 

  32. Satsangi, P., Sarma, E.: Integrated energy planning model for India with particular reference to renewable energy prospects. In: Energy options for the 90’s: proceedings of the National Solar Energy Convention held at Indian Institute of Technology, pp. 596–620. Tata McGraw Hill, New Delhi (1988)

    Google Scholar 

  33. Soliman, H.M., Leon-Garcia, A.: Game-theoretic demand-side management with storage devices for the future smart grid. IEEE Trans. Smart Grid 5(3), 1475–1485 (2014)

    Article  Google Scholar 

  34. Wang, Y., Saad, W., Mandayam, N.B., Poor, H.V.: Load shifting in the smart grid: to participate or not? IEEE Trans. Smart Grid 7(6), 2604–2614 (2015)

    Article  Google Scholar 

  35. Zhao, Z., Lee, W.C., Shin, Y., Song, K.B.: An optimal power scheduling method for demand response in home energy management system. IEEE Trans. Smart Grid 4(3), 1391–1400 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Phillipson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Phillipson, F., Bontekoe, T., Chiscop, I. (2021). Energy Storage Scheduling: A QUBO Formulation for Quantum Computing. In: Krieger, U.R., Eichler, G., Erfurth, C., Fahrnberger, G. (eds) Innovations for Community Services. I4CS 2021. Communications in Computer and Information Science, vol 1404. Springer, Cham. https://doi.org/10.1007/978-3-030-75004-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75004-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75003-9

  • Online ISBN: 978-3-030-75004-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics