Skip to main content

A Web Platform and a Context Aware Recommender System for Active Sport Events

Part of the Communications in Computer and Information Science book series (CCIS,volume 1404)

Abstract

Customer recommendations have proved to boost sales, increase customer satisfaction and improve user experience, making recommender systems an important tool for businesses. While recommendations of items such as products or movies, when browsing online, are heavily examined and several recommendation algorithms and systems are developed, still recommendation systems for events present unique challenges. This becomes even more challenging when recommending active sport events to users, due to inherent restrictions and limitations. This paper presents a context aware recommender system developed and integrated to the ST76 web platform, which enables for the first time, to the best of our knowledge, to provide recommendations of users that are more likely to participate in an upcoming active sport event. Also, we showcase the importance of the ST76 platform and recommender system for sports tourism, through the analysis of the economic impact of an active sport event hosted on the platform.

Keywords

  • Active sport events
  • Context aware
  • Economic impact
  • Recommender systems
  • Sports tourism
  • Web platforms

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-75004-6_13
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-75004-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Notes

  1. 1.

    Cyprus Tourism Portals: http://www.visitcyprus.com, http://www.heartcyprus.com/.

  2. 2.

    Web-based Holidays Booking Platforms: https://www.pamediakopes.gr/cy/, https://www.topkinisis.com.

  3. 3.

    Sports Tourism Website: www.runbis.com.

  4. 4.

    Cyprus Events Website: https://www.cyprusevents.net/.

  5. 5.

    Worlds Marathons: http://www.worldsmarathons.com/.

  6. 6.

    Sports Traveler: https://www.sportstraveler.net/.

  7. 7.

    Sport Event Websites or Web Platforms: http://www.roadtrips.com/, http://www.sportstravelandtours.com/, http://www.sportstraveltours.com/, http://www.globalsports.travel/ and https://gulliverstravel.co.uk.

  8. 8.

    Field Sports Travel: http://www.fieldsportstravel.com/.

  9. 9.

    Joblib Python Library: https://joblib.readthedocs.io/.

  10. 10.

    ST76_RS Questionnaire: https://forms.gle/d8Ah7VbeJLuQA3689 (EN version + 19 offline responses), https://forms.gle/6NTYjk8FXuDbBDxcA (GR version).

  11. 11.

    System Specification Deliverable: http://mdl.frederick.ac.cy/SportsTraveler76/Main/Results.

References

  1. Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans. Inf. Syst. (TOIS) 23, 103–145 (2005)

    CrossRef  Google Scholar 

  2. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B.: Recommender Systems Handbook, 1st edn. Springer, New York (2011). https://doi.org/10.1007/978-0-387-85820-3

    CrossRef  Google Scholar 

  3. Walter, F., Battiston, S., Yildirim, M., Schweitzer, F.: Moving recommender systems from on-line commerce to retail stores. Inf. Syst. e-Bus. Manag. 10(3), 367–393 (2012). https://doi.org/10.1007/s10257-011-0170-8

    CrossRef  Google Scholar 

  4. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: Proceedings of the 8th IEEE International Conference on Data Mining, pp. 263–272 (2008)

    Google Scholar 

  5. Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 217–253. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3_7

    CrossRef  Google Scholar 

  6. Ritchie, B., Adair, D.: Sport Tourism: Interrelationships. Impacts and Issues. Channel View Publications, Clevedon/Buffalo (2004)

    CrossRef  Google Scholar 

  7. Gibson, H.J., Lamont, M., Kennelly, M., Buning, R.J.: Introduction to the special issue active sport tourism. J. Sport Tour. 22(2), 83–91 (2018). https://doi.org/10.1080/14775085.2018.1466350

    CrossRef  Google Scholar 

  8. Quercia, D., et al.: Recommending social events from mobile phone location data. In: IEEE International Conference on Data Mining. IEEE (2010)

    Google Scholar 

  9. De Pessemier, T., et al.: Social recommendations for events. In: CEUR Workshop Proceedings, vol. 1066 (2013)

    Google Scholar 

  10. Macedo, A.Q., Marinho, L.B., Santos, R.L.T.: Context-aware event recommendation in event-based social networks. In: Proceedings of the 9th ACM Conference on Recommender Systems (RecSys 2015), pp. 123–130. Association for Computing Machinery, New York (2015). https://doi.org/https://doi.org/10.1145/2792838.2800187

  11. Herzog, D., Wörndl, W.: Mobile and context-aware event recommender systems. In: Monfort, V., Krempels, K.-H., Majchrzak, T.A., Traverso, P. (eds.) WEBIST 2016. LNBIP, vol. 292, pp. 142–163. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66468-2_8

    CrossRef  Google Scholar 

  12. Nguyen, Q., Huynh, L., Le, T., Chung, T.: Ontology-based recommender system for sport events. In: Lee, S., Ismail, R., Choo, H. (eds.) IMCOM 2019. AISC, vol. 935, pp. 870–885. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19063-7_69

    CrossRef  Google Scholar 

  13. World Wide Web Consortium (W3C): HTML Living Standard, The iFrame Element. https://html.spec.whatwg.org/#the-iframe-element. Accessed: 22 July 2020

  14. Forgy, E.W.: Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics 21, 768–769 (1965)

    Google Scholar 

  15. Stynes, D.J.: Economic Impact of Tourism: A Handbook for Tourism Professionals. University of Illinois, Tourism Research Laboratory, Urbana (1997)

    Google Scholar 

Download references

Acknowledgements

The work presented in this manuscript is performed based on the research funding received from the European Regional Development Fund and the Research Promotion Foundation of Cyprus as part of the Research in Startups SportsTraveler76 project (START-UPS/0618/0049–RESTART 2016–2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achilleas Achilleos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Achilleos, A., Konstantinides, A., Alexandrou, R., Markides, C., Zikouli, E., Papadopoulos, G.A. (2021). A Web Platform and a Context Aware Recommender System for Active Sport Events. In: Krieger, U.R., Eichler, G., Erfurth, C., Fahrnberger, G. (eds) Innovations for Community Services. I4CS 2021. Communications in Computer and Information Science, vol 1404. Springer, Cham. https://doi.org/10.1007/978-3-030-75004-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75004-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75003-9

  • Online ISBN: 978-3-030-75004-6

  • eBook Packages: Computer ScienceComputer Science (R0)