Skip to main content

Lattice-Valued Algebraic Structures Via Residuated Maps

  • Chapter
  • First Online:
Computational Intelligence and Mathematics for Tackling Complex Problems 3

Abstract

It is proved recently that cuts of a lattice valued fuzzy set determine a residuated map from the codomain lattice to the power set of the domain ordered dually to inclusion. Conversely, every residuated map from a complete lattice to the power set of the domain determines a lattice valued fuzzy set whose cuts coincide with the values of that map. These connections are applied here to the lattice valued algebraic structures and in particular to \(\varOmega \)-algebras, with a special reference to separation property.

Partially supported by Ministry of Education, Science and Technological Development, Republic of Serbia through Mathematical Institute SASA and Faculty of Science, University of Novi Sad and by the European Cooperation in Science and Technology (COST) Action CA17124.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bělohlávek, R.: Fuzzy Relational Systems. Kluwer Academic Publishers, Dordrecht (2002)

    Book  Google Scholar 

  2. Blyth, T.S.: Lattices and Ordered Algebraic Structures. Springer (2005)

    Google Scholar 

  3. Blyth, T.S., Janowitz, M.F.: Residuation Theory. Elsevier (2014)

    Google Scholar 

  4. Budimirović, B., Budimirović, V., Šešelja, B., Tepavčević, A.: Fuzzy identities with application to fuzzy semigroups. Inf. Sci. 266, 148–159 (2014)

    Article  MathSciNet  Google Scholar 

  5. Budimirović, B., Budimirović, V., Šešelja, B., Tepavčević, A.: Fuzzy equational classes are fuzzy varieties. Iran. J. Fuzzy Syst. 10, 1–18 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Budimirović, B., Budimirović, V., Šešelja, B., Tepavčević, A.: Fuzzy equational classes. In: 2012 IEEE International Conference Fuzzy Systems (FUZZ-IEEE), pp. 1–6

    Google Scholar 

  7. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press (1992)

    Google Scholar 

  8. Edeghagba, E.E., Šešelja, B., Tepavčević, A.: Omega-lattices. Fuzzy Sets Syst. 311, 53–69 (2017)

    Article  Google Scholar 

  9. Goguen, J.A.: \(L\)-fuzzy Sets. J. Math. Anal. Appl. 18, 145–174 (1967)

    Article  MathSciNet  Google Scholar 

  10. Grätzer, G.: General Lattice Theory, 2nd edn. Birkhäuser Verlag (2003)

    Google Scholar 

  11. Horváth, E.K., Radeleczki, S., Šešelja, B., Tepavčević, A.: Cuts of poset-valued functions in the framework of residuated maps. Fuzzy Sets Syst. (2020). https://doi.org/10.1016/j.fss.2020.01.003

  12. Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Prentice Hall P T R, New Jersey (1995)

    MATH  Google Scholar 

  13. Krapež, A., Šešelja, B., Tepavčević, A.: Solving linear equations by fuzzy quasigroups techniques. Inf. Sci. 491, 179–189 (2019)

    Article  MathSciNet  Google Scholar 

  14. Negoita, C.V., Ralescu, D.A.: Applications of Fuzzy Sets to System Analysis. Birkhäuser Verlag, Basel (1975)

    Book  Google Scholar 

  15. Šešelja, B., Tepavčević, A.: Completion of ordered structures by cuts of fuzzy sets: an overview. Fuzzy Sets Syst. 136, 1–19 (2003)

    Article  MathSciNet  Google Scholar 

  16. Šešelja, B., Tepavčević, A.: Representing ordered structures by fuzzy sets: an overview. Fuzzy Sets Syst. 136, 21–39 (2003)

    Article  MathSciNet  Google Scholar 

  17. Šešelja, B., Tepavčević, A.: Fuzzy identities. In: Proceedings of the 2009 IEEE International Conference on Fuzzy Systems, pp. 1660–1664

    Google Scholar 

  18. Šešelja B., Tepavčević, A.: \(\varOmega \)-groups in the language of \(\varOmega \)-groupoids. Fuzzy Sets Syst. (2019) in press. https://doi.org/10.1016/j.fss.2019.08.007

  19. Vojvodić, G., Šešelja, B.: On the lattice of weak congruence relations. Algebr. Univers. 25, 121–130 (1988)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreja Tepavčević .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Šešelja, B., Tepavčević, A. (2022). Lattice-Valued Algebraic Structures Via Residuated Maps. In: Harmati, I.Á., Kóczy, L.T., Medina, J., Ramírez-Poussa, E. (eds) Computational Intelligence and Mathematics for Tackling Complex Problems 3. Studies in Computational Intelligence, vol 959. Springer, Cham. https://doi.org/10.1007/978-3-030-74970-5_2

Download citation

Publish with us

Policies and ethics