Skip to main content

One-Cluster States in Adaptive Networks of Coupled Phase Oscillators

  • Chapter
  • First Online:
Patterns of Synchrony in Complex Networks of Adaptively Coupled Oscillators

Part of the book series: Springer Theses ((Springer Theses))

  • 297 Accesses

Abstract

Numeric studies suggested that one-cluster states may serve as building blocks for multicluster states. In this chapter, we exhaustively analyze the properties of one-cluster states in a network of adaptively coupled phase oscillators. In particular, we find that there are only three types of one-cluster states: splay, antipodal, and double antipodal. It is shown that all one-cluster states of splay type form a high dimensional family and thus give rise to infinitely many states the system can achieve. In order to understand the stability of these cluster states, we perform a linear stability analysis. We provide analytic results for the stability of antipodal, double antipodal as well as of special types of splay states, namely, rotating-wave states. In particular, we show that double antipodal states are always of saddle type but may appear as physically important transient states. Their role for the global phase space structure is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aoki T, Aoyagi T (2009) Co-evolution of phases and connection strengths in a network of phase oscillators. Phys Rev Lett 102:034101

    Article  ADS  Google Scholar 

  2. Kasatkin DV, Yanchuk S, Schöll E, Nekorkin VI (2017) Self-organized emergence of multi-layer structure and chimera states in dynamical networks with adaptive couplings. Phys Rev E 96:062211

    Article  ADS  Google Scholar 

  3. Seliger P, Young SC, Tsimring LS (2002) Plasticity and learning in a network of coupled phase oscillators. Phys Rev E 65:041906

    Article  ADS  MathSciNet  Google Scholar 

  4. Ren Q, Zhao J (2007) Adaptive coupling and enhanced synchronization in coupled phase oscillators. Phys Rev E 76:016207

    Article  ADS  Google Scholar 

  5. Aoki T, Aoyagi T (2011) Self-organized network of phase oscillators coupled by activity-dependent interactions. Phys Rev E 84:066109

    Article  ADS  Google Scholar 

  6. Picallo CB, Riecke H (2011) Adaptive oscillator networks with conserved overall coupling: sequential firing and near-synchronized states. Phys Rev E 83:036206

    Article  ADS  MathSciNet  Google Scholar 

  7. Timms L, English LQ (2014) Synchronization in phase-coupled Kuramoto oscillator networks with axonal delay and synaptic plasticity. Phys Rev E 89:032906

    Article  ADS  Google Scholar 

  8. Gushchin A, Mallada E, Tang A (2015) Synchronization of phase-coupled oscillators with plastic coupling strength. In: Information theory and applications workshop ITA 2015, CA, USA. IEEE, San Diego, pp 291–300

    Google Scholar 

  9. Kasatkin DV, Nekorkin VI (2016) Dynamics of the phase oscillators with plastic couplings. Radiophys Quantum Electron 58:877

    Article  ADS  Google Scholar 

  10. Nekorkin VI, Kasatkin DV (2016) Dynamics of a network of phase oscillators with plastic couplings. AIP Conf Proc 1738:210010

    Article  Google Scholar 

  11. Avalos-Gaytán V, Almendral JA, Leyva I, Battiston F, Nicosia V, Latora V, Boccaletti S (2018) Emergent explosive synchronization in adaptive complex networks. Phys Rev E 97:042301

    Article  ADS  Google Scholar 

  12. Berner R, Schöll E, Yanchuk S (2019) Multiclusters in networks of adaptively coupled phase oscillators. SIAM J Appl Dyn Syst 18:2227

    Article  MathSciNet  Google Scholar 

  13. Berner R, Fialkowski J, Kasatkin DV, Nekorkin VI, Yanchuk S, Schöll E (2019) Hierarchical frequency clusters in adaptive networks of phase oscillators. Chaos 29:103134

    Article  ADS  MathSciNet  Google Scholar 

  14. Wiley DA, Strogatz SH, Girvan M (2006) The size of the sync basin. Chaos 16:015103

    Article  ADS  MathSciNet  Google Scholar 

  15. Girnyk T, Hasler M, Maistrenko Y (2012) Multistability of twisted states in non-locally coupled Kuramoto-type models. Chaos 22:013114

    Google Scholar 

  16. Choe CU, Dahms T, Hövel P, Schöll E (2010) Controlling synchrony by delay coupling in networks: from in-phase to splay and cluster states. Phys Rev E 81:025205(R)

    Google Scholar 

  17. Blaha K, Lehnert J, Keane A, Dahms T, Hövel P, Schöll E, Hudson JL (2013) Clustering in delay-coupled smooth and relaxational chemical oscillators. Phys Rev E 88:062915

    Google Scholar 

  18. Ashwin P, Burylko O, Maistrenko Y (2008) Bifurcation to heteroclinic cycles and sensitivity in three and four coupled phase oscillators. Phys D 237:454

    Google Scholar 

  19. Burylko O, Pikovsky A (2011) Desynchronization transitions in nonlinearly coupled phase oscillators. Phys D 240:1352

    Google Scholar 

  20. Ashwin P, Bick C, Burylko O (2016) Identical phase oscillator networks: bifurcations, symmetry and reversibility for generalized coupling. Front Appl Math Stat 2

    Google Scholar 

  21. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Google Scholar 

  22. Liesen J, Mehrmann V (2015) Linear algebra. Springer, Cham

    Google Scholar 

  23. Perlikowski P, Yanchuk S, Popovych OV, Tass P (2010) Periodic patterns in a ring of delay-coupled oscillators. Phys Rev E 82:036208

    Article  ADS  MathSciNet  Google Scholar 

  24. Maistrenko Y, Penkovsky B, Rosenblum M (2014) Solitary state at the edge of synchrony in ensembles with attractive and repulsive interactions. Phys Rev E 89:060901

    Article  ADS  Google Scholar 

  25. Calamai M, Politi A, Torcini A (2009) Stability of splay states in globally coupled rotators. Phys Rev E 80:036209

    Article  ADS  Google Scholar 

  26. Dipoppa M, Krupa M, Torcini A, Gutkin BS (2012) Splay states in finite pulse-coupled networks of excitable neurons. SIAM J Appl Dyn Syst 11:864

    Article  MathSciNet  Google Scholar 

  27. Compte A, Sanchez-Vives MV, McCormick DA, Wang XJ (2003) Cellular and network mechanisms of slow oscillatory activity (\(<\)1 Hz) and wave propagations in a cortical network model. J Neurophysiol 89:2707

    Article  Google Scholar 

  28. Sporns O (2011) Networks of the brain. MIT Press, Cambridge

    MATH  Google Scholar 

  29. Popovych OV, Yanchuk S, Tass P (2011) Delay- and coupling-induced firing patterns in oscillatory neural loops. Phys Rev Lett 107:228102

    Article  ADS  Google Scholar 

  30. Abrams DM, Strogatz SH (2004) Chimera states for coupled oscillators. Phys Rev Lett 93:174102

    Article  ADS  Google Scholar 

  31. Klinshov V, Lücken L, Shchapin D, Nekorkin VI, Yanchuk S (2015) Multistable jittering in oscillators with pulsatile delayed feedback. Phys Rev Lett 114:178103

    Article  ADS  Google Scholar 

  32. Jaros P, Brezetsky S, Levchenko R, Dudkowski D, Kapitaniak T, Maistrenko Y (2018) Solitary states for coupled oscillators with inertia. Chaos 28:011103

    Article  ADS  MathSciNet  Google Scholar 

  33. Omel’chenko OE, Knobloch E (2019) Chimerapedia: coherence-incoherence patterns in one, two and three dimensions. New J Phys 21:093034

    Article  MathSciNet  Google Scholar 

  34. Kim SS, Rouault H, Druckmann S, Jayaraman V (2017) Ring attractor dynamics in the drosophila central brain. Science 356:849

    Google Scholar 

  35. Abbott LF, Nelson S (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3:1178

    Article  Google Scholar 

  36. Bi GQ, Poo MM (2001) Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu Rev Neurosci 24:139

    Google Scholar 

  37. Caporale N, Dan Y (2008) Spike timing-dependent plasticity: a Hebbian learning rule. Annu Rev Neurosci 31:25

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rico Berner .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berner, R. (2021). One-Cluster States in Adaptive Networks of Coupled Phase Oscillators. In: Patterns of Synchrony in Complex Networks of Adaptively Coupled Oscillators. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-74938-5_4

Download citation

Publish with us

Policies and ethics