Skip to main content

Population of Hodgkin–Huxley Neurons with Spike Timing-Dependent Plasticity

  • Chapter
  • First Online:
Patterns of Synchrony in Complex Networks of Adaptively Coupled Oscillators

Part of the book series: Springer Theses ((Springer Theses))

  • 310 Accesses

Abstract

In this chapter, we analyze the phenomenon of frequency clusters in a population of coupled Hodgkin–Huxley neurons with spike timing-dependent plasticity. We show their persistence against external noise and introduce a phenomenological phase oscillator model to understand their emergence. We observe that the splitting of a neural population to a few clusters that are synchronized at different frequencies may lead to a slow waxing and waning of the mean field amplitude and might relate to low-frequency modulation found in brain signals like local field potentials (LFP) or electroencephalographic (EEG) signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wittenberg GM, Wang SS (2006) Malleability of spike-timing-dependent plasticity at the ca3-ca1 synapse. J Neurosci 26:6610

    Article  Google Scholar 

  2. Kepecs A, van Rossum MCW, Song S, Tegner J (2002) Spike-timing-dependent plasticity: common themes and divergent vistas. Biol Cybern 87:446

    Article  Google Scholar 

  3. Popovych OV, Xenakis MN, Tass PA (2015) The spacing principle for unlearning abnormal neuronal synchrony. PLoS ONE 10:e0117205

    Article  Google Scholar 

  4. Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M (2007) Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci USA 104:13170

    Article  ADS  Google Scholar 

  5. Magri C, Schridde U, Murayama Y, Panzeri S (2012) The amplitude and timing of the bold signal reflects the relationship between local field potential power at different frequencies. J Neurosci 32:1395

    Article  Google Scholar 

  6. Monto S, Palva S, Voipio J, Palva JM (2008) Very slow EEG fluctuations predict the dynamics of stimulus detection and oscillation amplitudes in humans. J Neurosci 28:8268

    Article  Google Scholar 

  7. Alvarado-Rojas C, Valderrama M, Fouad-Ahmed A, Feldwisch-Drentrup H, Ihle M, Teixeira CA, Sales F, Schulze-Bonhage A, Adam C, Dourado A, Charpier S, Navarro V, Le Van Quyen M (2014) Slow modulations of high-frequency activity (40–140 hz) discriminate preictal changes in human focal epilepsy. Sci Rep 4:4545

    Article  ADS  Google Scholar 

  8. Maistrenko Y, Lysyansky B, Hauptmann C, Burylko O, Tass PA (2007) Multistability in the Kuramoto model with synaptic plasticity. Phys Rev E 75:066207

    Article  ADS  MathSciNet  Google Scholar 

  9. Câteau H, Kitano K, Fukai T (2008) Interplay between a phase response curve and spike-timing-dependent plasticity leading to wireless clustering. Phys Rev E 77:051909

    Article  ADS  Google Scholar 

  10. Röhr V, Berner R, Lameu EL, Popovych OV, Yanchuk S (2019) Frequency cluster formation and slow oscillations in neural populations with plasticity. PLoS ONE 14:e0225094

    Article  Google Scholar 

  11. Gerstner W, Kempter R, von Hemmen JL, Wagner H (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383:76

    Article  ADS  Google Scholar 

  12. Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213

    Google Scholar 

  13. Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464

    Google Scholar 

  14. Clopath C, Büsing L, Vasilaki E, Gerstner W (2010) Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nat Neurosci 13:344

    Article  Google Scholar 

  15. Hoppensteadt FC, Izhikevich EM (1997) Weakly connected neural networks. Springer, New York

    Book  Google Scholar 

  16. Pikovsky A, Rosenblum M, Kurths J (2001) Synchronization: a universal concept in nonlinear sciences, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  17. Guckenheimer J (1975) Isochrons and phaseless sets. J Math Biol 1:259

    Article  MathSciNet  Google Scholar 

  18. Winfree AT (2001) The geometry of biological time. Springer, New York

    Book  Google Scholar 

  19. Song S, Miller KD, Abbott LF (2000) Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci 3:919

    Article  Google Scholar 

  20. Rubin J, Lee DD, Sompolinsky H (2001) Equilibrium properties of temporally asymmetric hebbian plasticity. Phys Rev Lett 86:364

    Article  ADS  Google Scholar 

  21. Deco G, Jirsa VK, McIntosh AR, Sporns O, Kötter R (2009) Key role of coupling, delay, and noise in resting brain fluctuations. Proc Natl Acad Sci USA 106:10302

    Article  ADS  Google Scholar 

  22. Ponce-Alvarez A, Deco G, Hagmann P, Romani GL, Mantini D, Corbetta M (2015) Resting-state temporal synchronization networks emerge from connectivity topology and heterogeneity. PLoS Comp Biol 11:e1004100

    Article  ADS  Google Scholar 

  23. Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (2002) Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. J Neurosci 22:8691

    Article  Google Scholar 

  24. Compte A, Sanchez-Vives MV, McCormick DA, Wang XJ (2003) Cellular and network mechanisms of slow oscillatory activity (\(<\)1 Hz) and wave propagations in a cortical network model. J Neurophys 89:2707

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rico Berner .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berner, R. (2021). Population of Hodgkin–Huxley Neurons with Spike Timing-Dependent Plasticity. In: Patterns of Synchrony in Complex Networks of Adaptively Coupled Oscillators. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-74938-5_3

Download citation

Publish with us

Policies and ethics