Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 344 Accesses

Abstract

In this chapter, we provide a basic introduction to complex and adaptive dynamical networks. We introduce graph theoretical preliminaries along with different classes of networks studied in the subsequent chapters. We discuss different types of models and coupling schemes. Further, we show how adaptivity is modeled in the context of synaptic plasticity and outline the reduction to phase oscillator models with phase difference-dependent plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pikovsky A, Rosenblum M, Kurths J (2001) Synchronization: a universal concept in nonlinear sciences, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  2. Strogatz SH (2014) Nonlinear dynamics and chaos. CRC Press, Boca Raton

    Google Scholar 

  3. Boccaletti S, Pisarchik AN, del Genio CI, Amann A (2018) Synchronization: from coupled systems to complex networks. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  4. Godsil C, Royle G (2001) Algebraic graph theory. Springer, New York

    Book  MATH  Google Scholar 

  5. Costa LDF, Rodrigues FA, Travieso G, Villas Boas PR (2007) Characterization of complex networks: a survey of measurements. Adv Phys 56:167

    Google Scholar 

  6. Newman MEJ (2010) Networks: an introduction. Oxford University Press Inc, New York

    Book  MATH  Google Scholar 

  7. Cvetkovic D, Rowlinson P, Simic S (1997) Eigenspaces of graphs. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  8. Kouvaris NE, Isele TM, Mikhailov AS, Schöll E (2014) Propagation failure of excitation waves on trees and random networks. Europhys Lett 106:68001

    Article  ADS  Google Scholar 

  9. Isele TM, Schöll E (2015) Effect of small-world topology on wave propagation on networks of excitable elements. New J Phys 17:023058

    Article  MathSciNet  MATH  Google Scholar 

  10. Isele TM, Hartung B, Hövel P, Schöll E (2015) Excitation waves on a minimal small-world model. Eur Phys J B 88:104

    Article  ADS  MathSciNet  Google Scholar 

  11. Korte B, Vygen J (2018) Combinatorial optimization. Springer, Berlin

    Book  MATH  Google Scholar 

  12. Fiedler M (1973) Algebraic connectivity of graphs. Czech Math J 23:298

    Article  MathSciNet  MATH  Google Scholar 

  13. Fiedler M (1989) Laplacian of graphs and algebraic connectivity. Banach Cent Publ 25:57

    Article  MathSciNet  MATH  Google Scholar 

  14. Davis PJ (1979) Circulant matrices. Wiley, Hoboken

    MATH  Google Scholar 

  15. Gray RM (2005) Toeplitz and circulant matrices: a review. Found Trends Commun Inf Theory 2

    Google Scholar 

  16. Hizanidis J, Panagakou E, Omelchenko I, Schöll E, Hövel P, Provata A (2015) Chimera states in population dynamics: networks with fragmented and hierarchical connectivities. Phys Rev E 92:012915

    Article  ADS  MathSciNet  Google Scholar 

  17. Omelchenko I, Provata A, Hizanidis J, Schöll E, Hövel P (2015) Robustness of chimera states for coupled FitzHugh-Nagumo oscillators. Phys Rev E 91:022917

    Article  ADS  MathSciNet  Google Scholar 

  18. Plotnikov SA, Lehnert J, Fradkov AL, Schöll E (2016) Synchronization in heterogeneous FitzHugh-Nagumo networks with hierarchical architecture. Phys Rev E 94:012203

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Tsigkri-DeSmedt ND, Hizanidis J, Hövel P, Provata A (2016) Multi-chimera states and transitions in the leaky integrate-and-fire model with excitatory coupling and hierarchical connectivity. Eur Phys J ST 225:1149

    Article  Google Scholar 

  20. Ulonska S, Omelchenko I, Zakharova A, Schöll E (2016) Chimera states in networks of Van der Pol oscillators with hierarchical connectivities. Chaos 26:094825

    Article  ADS  MathSciNet  Google Scholar 

  21. Krishnagopal S, Lehnert J, Poel W, Zakharova A, Schöll E (2017) Synchronization patterns: from network motifs to hierarchical networks. Phil Trans R Soc A 375:20160216

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Sawicki J, Omelchenko I, Zakharova A, Schöll E (2019) Delay-induced chimeras in neural networks with fractal topology. Eur Phys J B 92:54

    Article  ADS  MathSciNet  Google Scholar 

  23. De Domenico M, Solé-Ribalta A, Cozzo E, Kivelä M, Moreno Y, Porter MA, Gómez S, Arenas A (2013) Mathematical formulation of multilayer networks. Phys Rev X 3:041022

    MATH  Google Scholar 

  24. Boccaletti S, Bianconi G, Criado R, del Genio CI, Gómez-Gardeñes J, Romance M, Sendiña Nadal I, Wang Z, Zanin M (2014) The structure and dynamics of multilayer networks. Phys Rep 544:1

    Google Scholar 

  25. Kivelä M, Arenas A, Barthélemy M, Gleeson JP, Moreno Y, Porter MA (2014) Multilayer networks. J Complex Netw 2:203

    Article  Google Scholar 

  26. Liesen J, Mehrmann V (2015) Linear algebra. Springer, Cham

    Book  MATH  Google Scholar 

  27. Gómez S, Díaz-Guilera A, Gómez-Gardeñes J, Pérez Vicente CJ, Moreno Y, Arenas A (2013) Diffusion dynamics on multiplex networks. Phys Rev Lett 110:028701

    Google Scholar 

  28. Solé-Ribalta A, De Domenico M, Kouvaris NE, Díaz-Guilera A, Gómez S, Arenas A (2013) Spectral properties of the laplacian of multiplex networks. Phys Rev E 88:032807

    Article  ADS  Google Scholar 

  29. Bollobás B (1998) Modern graph theory. Springer, New York

    Book  MATH  Google Scholar 

  30. MacArthur BD, Sanchez-Garcia RJ, Anderson JW (2008) Symmetry in complex networks. Discrete Appl Math 156:3525

    Article  MathSciNet  MATH  Google Scholar 

  31. MacArthur BD, Sanchez-Garcia RJ (2009) Spectral characteristics of network redundancy. Phys Rev E 80:026117

    Article  ADS  Google Scholar 

  32. Xiao Y, MacArthur BD, Wang H, Xiong M, Wang W (2008) Network quotients: structural skeletons of complex systems. Phys Rev E 78:046102

    Article  ADS  Google Scholar 

  33. Fiedler B (1988) Global bifurcation of periodic solutions with symmetry. Springer, Heidelberg

    Book  MATH  Google Scholar 

  34. Golubitsky M, Stewart I (1988) Singularities and groups in bifurcation theory. Volume 2, Applied mathematical sciences, vol 69. Springer, New York

    Google Scholar 

  35. Ashwin P, Swift JW (1992) The dynamics of n weakly coupled identical oscillators. J Nonlinear Sci 2:69

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Tanaka T, Aoyagi T (2011) Multistable attractors in a network of phase oscillators with three-body interactions. Phys Rev Lett 106:224101

    Article  ADS  Google Scholar 

  37. Ashwin P, Rodrigues A (2016) Hopf normal form with \(S_N\) symmetry and reduction to systems of nonlinearly coupled phase oscillators. Phys D 325:14

    Article  MathSciNet  MATH  Google Scholar 

  38. Bick C, Ashwin P, Rodrigues A (2016) Chaos in generically coupled phase oscillator networks with nonpairwise interactions. Chaos 26:094814

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Skardal PS, Arenas A (2019) Abrupt desynchronization and extensive multistability in globally coupled oscillator simplexes. Phys Rev Lett 122:248301

    Article  ADS  Google Scholar 

  40. León I, Pazó D (2019) Phase reduction beyond the first order: the case of the mean-field complex Ginzburg-Landau equation. Phys Rev E 100:012211

    Article  ADS  MathSciNet  Google Scholar 

  41. Giusti C, Ghrist R, Bassett DS (2016) Two’s company, three (or more) is a simplex. J Comp Neurosci 41:1

    Article  MathSciNet  Google Scholar 

  42. Barthélemy M (2011) Spatial networks. Phys Rep 499:1

    Article  ADS  MathSciNet  Google Scholar 

  43. Bennett MV, Zukin RS (2004) Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41:495

    Article  Google Scholar 

  44. Kopell N, Ermentrout GB (2004) Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks. Proc Natl Acad Sci USA 101:15482

    Article  ADS  Google Scholar 

  45. Connors BW, Long MA (2004) Electrical synapses in the mammalian brain. Annu Rev Neurosci 27:393

    Article  Google Scholar 

  46. Curti S, O’Brien J (2016) Characteristics and plasticity of electrical synaptic transmission. BMC Cell Biol. 17

    Google Scholar 

  47. Reimbayev R, Daley K, Belykh IV (2017) When two wrongs make a right: synchronized neuronal bursting from combined electrical and inhibitory coupling. Phil Trans R Soc A 375:20160282

    Google Scholar 

  48. Alcami P, Pereda AE (2019) Beyond plasticity: the dynamic impact of electrical synapses on neural circuits. Nat Rev Neurosci 20:263

    Article  Google Scholar 

  49. Pecora LM, Carroll TL (1998) Master stability functions for synchronized coupled systems. Phys Rev Lett 80:2109

    Article  ADS  Google Scholar 

  50. Lehnert J (2016) Controlling synchronization patterns in complex networks, Springer Theses. Springer, Heidelberg

    Google Scholar 

  51. Kuramoto Y (1984) Chemical oscillations, waves and turbulence. Springer, Berlin

    Book  MATH  Google Scholar 

  52. Truitt PA, Hertzberg JB, Altunkaya E, Schwab KC (2013) Linear and nonlinear coupling between transverse modes of a nanomechanical resonator. J Appl Phys 114:114307

    Article  ADS  Google Scholar 

  53. Penkovsky B, Porte X, Jacquot M, Larger L, Brunner D (2019) Coupled nonlinear delay systems as deep convolutional neural networks. Phys Rev Lett 123:054101

    Article  ADS  Google Scholar 

  54. Baumann F, Lorenz-Spreen P, Sokolov IM, Starnini M (2020) Modeling echo chambers and polarization dynamics in social networks. Phys Rev Lett 124:048301

    Article  ADS  MathSciNet  Google Scholar 

  55. Wang XJ, Rinzel J (1992) Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comput 4:84

    Article  Google Scholar 

  56. White JA, Chow CC, Ritt J, Soto-Trevino C, Kopell N (1998) Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. J Comp Neurosci 5:5

    Article  MATH  Google Scholar 

  57. Hauptmann C, Tass PA (2009) Cumulative and after-effects of short and weak coordinated reset stimulation: a modeling study. J Neural Eng 6:016004

    Article  Google Scholar 

  58. Popovych OV, Yanchuk S, Tass P (2013) Self-organized noise resistance of oscillatory neural networks with spike timing-dependent plasticity. Sci Rep 3:2926

    Article  ADS  Google Scholar 

  59. Popovych OV, Xenakis MN, Tass PA (2015) The spacing principle for unlearning abnormal neuronal synchrony. PLoS ONE 10:e0117205

    Article  Google Scholar 

  60. Rinzel J (1990) Mechanisms for nonuniform propagation along excitable cables. Ann N Y Acad Sci 591:51

    Article  ADS  Google Scholar 

  61. Gillies A, Willshaw D (2004) Models of the subthalamic nucleus: the importance of intranuclear connectivity. Med Eng Phys 26:723

    Article  Google Scholar 

  62. Sakaguchi H, Kuramoto Y (1986) A soluble active rotater model showing phase transitions via mutual entertainment. Prog Theor Phys 76:576

    Article  ADS  Google Scholar 

  63. Strogatz SH (2000) From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys D 143:1

    Article  MathSciNet  MATH  Google Scholar 

  64. Acebrón JA, Bonilla LL, Pérez Vicente CJ, Ritort F, Spigler R (2005) The Kuramoto model: a simple paradigm for synchronization phenomena. Rev Mod Phys 77:137

    Google Scholar 

  65. Omel’chenko OE, Wolfrum M (2012) Nonuniversal transitions to synchrony in the Sakaguchi-Kuramoto model. Phys Rev Lett 109:164101

    Article  ADS  Google Scholar 

  66. Pikovsky A, Rosenblum M (2008) Partially integrable dynamics of hierarchical populations of coupled oscillators. Phys Rev Lett 101:264103

    Article  ADS  Google Scholar 

  67. Daido H (1992) Order function and macroscopic mutual entrainment in uniformly coupled limit-cycle oscillators. Prog Theor Phys 88:1213

    Article  ADS  Google Scholar 

  68. Daido H (1994) Generic scaling at the onset of macroscopic mutual entrainment in limit-cycle oscillators with uniform all-to-all coupling. Phys Rev Lett 73:760

    Article  ADS  Google Scholar 

  69. Ashwin P, Burylko O (2015) Weak chimeras in minimal networks of coupled phase oscillators. Chaos 25:013106

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Kasatkin DV, Nekorkin VI (2018) The effect of topology on organization of synchronous behavior in dynamical networks with adaptive couplings. Eur Phys J Spec Top 227:1051

    Article  Google Scholar 

  71. Schröder M, Timme M, Witthaut D (2017) A universal order parameter for synchrony in networks of limit cycle oscillators. Chaos 27:073119

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. Mehrmann V, Morandin R, Olmi S, Schöll E (2018) Qualitative stability and synchronicity analysis of power network models in port-Hamiltonian form. Chaos 28:101102

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Phys 117:500

    Google Scholar 

  74. Gerstner W, Kistler WM, Naud R, Paninski L (2014) Neuronal dynamics: from single neurons to networks and models of cognition. Cambridge University Press, Cambridge

    Book  Google Scholar 

  75. Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15:1063

    Article  Google Scholar 

  76. Hansel D, Mato G, Meunier C (1993) Phase dynamics for weakly coupled Hodgkin-Huxley neurons. Europhys Lett 23:367

    Article  ADS  Google Scholar 

  77. Lücken L, Popovych OV, Tass P, Yanchuk S (2016) Noise-enhanced coupling between two oscillators with long-term plasticity. Phys Rev E 93:032210

    Article  ADS  MathSciNet  Google Scholar 

  78. Holme P, Saramäki J (2012) Temporal networks. Phys Rep 519:97

    Article  ADS  Google Scholar 

  79. Holme P (2015) Modern temporal network theory: a colloquium. Eur Phys J B 88:1

    Article  Google Scholar 

  80. Gross T, Blasius B (2008) Adaptive coevolutionary networks: a review. J R Soc Interface 5:259

    Article  Google Scholar 

  81. Gross T, Sayama H (2009) Adaptive networks. Springer, Berlin

    Book  Google Scholar 

  82. Sayama H, Pestov I, Schmidt J, Bush BJ, Wong C, Yamanoi J, Gross T (2013) Modeling complex systems with adaptive networks. Comput Math Appl 65:1645

    Article  MathSciNet  MATH  Google Scholar 

  83. Feldman DE (2012) The spike-timing dependence of plasticity. Neuron 75:556

    Article  Google Scholar 

  84. Landisman CE, Connors BW (2005) Long-term modulation of electrical synapses in the mammalian thalamus. Science 310:1809

    Article  ADS  Google Scholar 

  85. Mathy A, Clark BA, Häusser M (2014) Synaptically induced long-term modulation of electrical coupling in the inferior olive. Neuron 81:1290

    Article  Google Scholar 

  86. Breakspear M (2017) Dynamic models of large-scale brain activity. Nat Neurosci 20:340

    Article  Google Scholar 

  87. Abbott LF, Nelson S (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3:1178

    Article  Google Scholar 

  88. Dan Y, Poo MM (2006) Spike timing-dependent plasticity: from synapse to perception. Phys Rev 86:1033

    Google Scholar 

  89. Letzkus JJ, Kampa BM, Stuart GJ (2007) Does spike timing-dependent synaptic plasticity underlie memory formation? Clin Exp Pharmacol Phys 34:1070

    Article  Google Scholar 

  90. Caporale N, Dan Y (2008) Spike timing-dependent plasticity: a Hebbian learning rule. Annu Rev Neurosci 31:25

    Article  Google Scholar 

  91. Sjöström PJ, Rancz EA, Roth A, Häusser M (2008) Dendritic excitability and synaptic plasticity. Phys Rev 88:769

    Google Scholar 

  92. Froemke RC, Letzkus JJ, Kampa BM, Hang GB, Stuart GJ (2010) Dendritic synapse location and neocortical spike-timing-dependent plasticity. Front. Synaptic Neurosci 2

    Google Scholar 

  93. Markram H, Gerstner W, Sjöström PJ (2011) A history of spike-timing-dependent plasticity. Front Synaptic Neurosci 3

    Google Scholar 

  94. Gerstner W, Kempter R, von Hemmen JL, Wagner H (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383:76

    Article  ADS  Google Scholar 

  95. Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464

    Google Scholar 

  96. Shulz DE, Feldman DE (2013) Chapter 9 - spike timing-dependent plasticity. Neural circuit development and function in the brain. Academic, Cambridge, pp 155–181

    Google Scholar 

  97. Bell CC, Han VZ, Sugawara Y, Grant K (1997) Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387:278

    Google Scholar 

  98. Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14:1569

    Article  Google Scholar 

  99. Ashwin P, Coombes S, Nicks R (2016) Mathematical frameworks for oscillatory network dynamics in neuroscience. J Math Neurosci 6(2):2

    Google Scholar 

  100. Hoppensteadt FC, Izhikevich EM (1996) Synaptic organizations and dynamical properties of weakly connected neural oscillators. Biol Cybern 75:117

    Article  MATH  Google Scholar 

  101. Pietras B, Daffertshofer A (2019) Network dynamics of coupled oscillators and phase reduction techniques. Phys Rep 819:1

    Article  ADS  MathSciNet  Google Scholar 

  102. Maistrenko Y, Lysyansky B, Hauptmann C, Burylko O, Tass PA (2007) Multistability in the Kuramoto model with synaptic plasticity. Phys Rev E 75:066207

    Article  ADS  MathSciNet  Google Scholar 

  103. Ren Q, Zhao J (2007) Adaptive coupling and enhanced synchronization in coupled phase oscillators. Phys Rev E 76:016207

    Article  ADS  Google Scholar 

  104. Aoki T, Aoyagi T (2009) Co-evolution of phases and connection strengths in a network of phase oscillators. Phys Rev Lett 102:034101

    Article  ADS  Google Scholar 

  105. Aoki T, Aoyagi T (2011) Self-organized network of phase oscillators coupled by activity-dependent interactions. Phys Rev E 84:066109

    Article  ADS  Google Scholar 

  106. Picallo CB, Riecke H (2011) Adaptive oscillator networks with conserved overall coupling: Sequential firing and near-synchronized states. Phys Rev E 83:036206

    Article  ADS  MathSciNet  Google Scholar 

  107. Timms L, English LQ (2014) Synchronization in phase-coupled Kuramoto oscillator networks with axonal delay and synaptic plasticity. Phys Rev E 89:032906

    Article  ADS  Google Scholar 

  108. Gushchin A, Mallada E, Tang A (2015) Synchronization of phase-coupled oscillators with plastic coupling strength. In: Information theory and applications workshop ITA 2015, CA, USA. IEEE, San Diego, pp 291–300

    Google Scholar 

  109. Kasatkin DV, Nekorkin VI (2016) Dynamics of the phase oscillators with plastic couplings. Radiophys Quantum Electron 58:877

    Article  ADS  Google Scholar 

  110. Nekorkin VI, Kasatkin DV (2016) Dynamics of a network of phase oscillators with plastic couplings. AIP Conf Proc 1738:210010

    Article  Google Scholar 

  111. Kasatkin DV, Yanchuk S, Schöll E, Nekorkin VI (2017) Self-organized emergence of multi-layer structure and chimera states in dynamical networks with adaptive couplings. Phys Rev E 96:062211

    Article  ADS  Google Scholar 

  112. Avalos-Gaytán V, Almendral JA, Leyva I, Battiston F, Nicosia V, Latora V, Boccaletti S (2018) Emergent explosive synchronization in adaptive complex networks. Phys Rev E 97:042301

    Article  ADS  Google Scholar 

  113. Berner R, Schöll E, Yanchuk S (2019) Multiclusters in networks of adaptively coupled phase oscillators. SIAM J Appl Dyn Syst 18:2227

    Article  MathSciNet  Google Scholar 

  114. Berner R, Fialkowski J, Kasatkin DV, Nekorkin VI, Yanchuk S, Schöll E (2019) Hierarchical frequency clusters in adaptive networks of phase oscillators. Chaos 29:103134

    Article  ADS  MathSciNet  MATH  Google Scholar 

  115. Berner R, Sawicki J, Schöll E (2020) Birth and stabilization of phase clusters by multiplexing of adaptive networks. Phys Rev Lett 124:088301

    Article  ADS  MathSciNet  Google Scholar 

  116. Berner R, Vock S, Schöll E, Yanchuk S (2021) Desynchronization transitions in adaptive networks. Phys Rev Lett 126:028301

    Article  ADS  MathSciNet  Google Scholar 

  117. Berner R, Polanska A, Schöll E, Yanchuk S (2020) Solitary states in adaptive nonlocal oscillator networks. Eur Phys J Spec Top 229:2183

    Article  Google Scholar 

  118. Berner R, Yanchuk S, Schöll E (2021) What adaptive neuronal networks teach us about power grids. Phys Rev E 103:042315

    Google Scholar 

  119. Vock S, Berner R, Yanchuk S, Schöll E (2021) Effect of diluted connectivities on cluster synchronization of adaptively coupled oscillator networks. arXiv:2101.05601

  120. Hebb D (1949) The organization of behavior: a neuropsychological theory. Wiley, New York (new edn)

    Google Scholar 

  121. Hoppensteadt FC, Izhikevich EM (1996) Synaptic organizations and dynamical properties of weakly connected neural oscillators ii. learning phase information. Biol Cybern 75:129

    Google Scholar 

  122. Seliger P, Young SC, Tsimring LS (2002) Plasticity and learning in a network of coupled phase oscillators. Phys Rev E 65:041906

    Article  ADS  MathSciNet  MATH  Google Scholar 

  123. Aoki T (2015) Self-organization of a recurrent network under ongoing synaptic plasticity. Neural Netw 62:11

    Article  MATH  Google Scholar 

  124. Kuehn C (2015) Multiple time scale dynamics. Springer, Cham

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rico Berner .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berner, R. (2021). Fundamentals of Adaptive and Complex Dynamical Networks. In: Patterns of Synchrony in Complex Networks of Adaptively Coupled Oscillators. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-74938-5_2

Download citation

Publish with us

Policies and ethics