Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 317 Accesses

Abstract

Complex networks are an ubiquitous paradigm in nature and technology, with a wide field of applications from physics, chemistry, biology, neuroscience, as well as engineering and socio-economic systems. We provide a concise overview on the field of complex and adaptive dynamical networks, and highlight the outstanding role of phase oscillator models for studying synchronization phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Costa LDF, Rodrigues FA, Travieso G, Villas Boas PR (2007) Characterization of complex networks: a survey of measurements. Adv Phys 56:167

    Google Scholar 

  4. Erdös P, Rényi A (1959) On random graphs. Publ Math Debrecen 6:290

    Article  MathSciNet  MATH  Google Scholar 

  5. Erdös P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5:17

    MathSciNet  MATH  Google Scholar 

  6. Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world” networks. Nature 393:440

    Google Scholar 

  8. Newman MEJ, Moore C, Watts DJ (2000) Mean-field solution of the small-world network model. Phys Rev Lett 84:3201

    Article  ADS  Google Scholar 

  9. Maier BF (2019) Generalization of the small-world effect on a model approaching the Erdös-Rényi random graph. Sci Rep 9:9268

    Article  ADS  Google Scholar 

  10. Giusti C, Ghrist R, Bassett DS (2016) Two’s company, three (or more) is a simplex. J Comp Neurosci 41:1

    Article  MathSciNet  Google Scholar 

  11. Sizemore AE, Phillips-Cremins JE, Ghrist R, Bassett DS (2019) The importance of the whole: topological data analysis for the network neuroscientist. Netw Neurosci 3:656

    Article  Google Scholar 

  12. Porter MA, Gleeson JP (2016) Dynamical systems on networks. Frontiers in applied dynamical systems: reviews and tutorials, vol. 4. Springer International Publishing

    Google Scholar 

  13. Boccaletti S, Pisarchik AN, del Genio CI, Amann A (2018) Synchronization: from coupled systems to complex networks. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  14. Pecora LM, Carroll TL (1998) Master stability functions for synchronized coupled systems. Phys Rev Lett 80:2109

    Article  ADS  Google Scholar 

  15. Choe CU, Dahms T, Hövel P, Schöll E (2010) Controlling synchrony by delay coupling in networks: from in-phase to splay and cluster states. Phys Rev E 81:025205(R)

    Article  ADS  Google Scholar 

  16. Kyrychko YN, Blyuss KB, Schöll E (2014) Synchronization of networks of oscillators with distributed-delay coupling. Chaos 24:043117

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Pecora LM, Sorrentino F, Hagerstrom AM, Murphy TE, Roy R (2014) Symmetries, cluster synchronization, and isolated desynchronization in complex networks. Nat Commun 5:4079

    Article  ADS  Google Scholar 

  18. Wille C, Lehnert J, Schöll E (2014) Synchronization-desynchronization transitions in complex networks: an interplay of distributed time delay and inhibitory nodes. Phys Rev E 90:032908

    Article  ADS  Google Scholar 

  19. Lehnert J (2016) Controlling synchronization patterns in complex networks, Springer Theses. Springer, Heidelberg

    Google Scholar 

  20. Bullmore ET, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186

    Article  Google Scholar 

  21. Bassett DS, Sporns O (2017) Network neuroscience. Nat. Neurosci. 20:353 EP (review Article)

    Google Scholar 

  22. Bertolero M, Bassett DS (2019) How matter becomes mind. Sci. Am. pp 18–25

    Google Scholar 

  23. Gerstner W, Kistler WM, Naud R, Paninski L (2014) Neuronal dynamics: from single neurons to networks and models of cognition. Cambridge University Press, Cambridge

    Book  Google Scholar 

  24. Börgers C (2017) An introduction to modeling neuronal dynamics. Springer, Cham

    Book  MATH  Google Scholar 

  25. Compte A, Sanchez-Vives MV, McCormick DA, Wang XJ (2003) Cellular and network mechanisms of slow oscillatory activity (\(<\)1 Hz) and wave propagations in a cortical network model. J Neurophys 89:2707

    Article  Google Scholar 

  26. Sporns O (2011) Networks of the brain. MIT Press, Cambridge

    MATH  Google Scholar 

  27. Popovych OV, Yanchuk S, Tass P (2011) Delay- and coupling-induced firing patterns in oscillatory neural loops. Phys Rev Lett 107:228102

    Article  ADS  Google Scholar 

  28. Yanchuk S, Perlikowski P, Popovych OV, Tass P (2011) Variability of spatio-temporal patterns in non-homogeneous rings of spiking neurons. Chaos 21:047511

    Article  ADS  Google Scholar 

  29. Pasemann F (1995) Characterization of periodic attractors in neural ring networks. Neural Netw 8:421

    Article  Google Scholar 

  30. Bressloff PC, Coombes S, de Souza B (1997) Dynamics of a ring of pulse-coupled oscillators: group-theoretic approach. Phys Rev Lett 79:2791

    Article  ADS  Google Scholar 

  31. Yanchuk S, Wolfrum M (2008) Destabilization patterns in chains of coupled oscillators. Phys Rev E 77:26212

    Article  ADS  MathSciNet  Google Scholar 

  32. Bonnin M (2009) Waves and patterns in ring lattices with delays. Phys D 238:77

    Article  MathSciNet  MATH  Google Scholar 

  33. Zou W, Zhan M (2009) Splay states in a ring of coupled oscillators: from local to global coupling. SIAM J Appl Dyn Syst 8:1324

    Article  MathSciNet  MATH  Google Scholar 

  34. Horikawa Y, Kitajima H (2009) Duration of transient oscillations in ring networks of unidirectionally coupled neurons. Phys D 238:216

    Article  MathSciNet  MATH  Google Scholar 

  35. Perlikowski P, Yanchuk S, Popovych OV, Tass P (2010) Periodic patterns in a ring of delay-coupled oscillators. Phys Rev E 82:036208

    Article  ADS  MathSciNet  Google Scholar 

  36. Omelchenko I, Maistrenko Y, Hövel P, Schöll E (2011) Loss of coherence in dynamical networks: spatial chaos and chimera states. Phys Rev Lett 106:234102

    Article  ADS  Google Scholar 

  37. Kantner M, Yanchuk S (2013) Bifurcation analysis of delay-induced patterns in a ring of Hodgkin-Huxley neurons. Phil Trans R Soc A 371:20120470

    Article  MathSciNet  MATH  Google Scholar 

  38. Omelchenko I, Omel’chenko OE, Hövel P, Schöll E (2013) When nonlocal coupling between oscillators becomes stronger: patched synchrony or multichimera states. Phys Rev Lett 110:224101

    Article  ADS  Google Scholar 

  39. Yanchuk S, Perlikowski P, Wolfrum M, Stefanski A, Kapitaniak T (2015) Amplitude equations for collective spatio-temporal dynamics in arrays of coupled systems. Chaos 25:033113

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Schöll E (2016) Synchronization patterns and chimera states in complex networks: interplay of topology and dynamics. Eur Phys J Spec Top 225:891

    Article  Google Scholar 

  41. Klinshov V, Shchapin D, Yanchuk S, Wolfrum M, D’Huys O, Nekorkin VI (2017) Embedding the dynamics of a single delay system into a feed-forward ring. Phys Rev E 96:042217

    Article  ADS  Google Scholar 

  42. Burylko O, Mielke A, Wolfrum M, Yanchuk S (2018) Coexistence of hamiltonian-like and dissipative dynamics in rings of coupled phase oscillators with skew-symmetric coupling. SIAM J Appl Dyn Syst 17:2076

    Article  MathSciNet  MATH  Google Scholar 

  43. Omel’chenko OE (2018) The mathematics behind chimera states. Nonlinearity 31:R121

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Eguiluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV (2005) Scale-free brain functional networks. Phys Rev Lett 94:4

    Google Scholar 

  45. Humphries MD, Gurney K, Prescott TJ (2006) The brainstem reticular formation is a small-world, not scale-free, network. Proc R Soc B: Biol Sci 273:503

    Article  Google Scholar 

  46. Bassett DS, Bullmore ET (2006) Small-world brain networks. Neuroscientist 12:512

    Article  Google Scholar 

  47. Meunier D, Lambiotte R, Bullmore ET (2010) Modular and hierarchically modular organization of brain networks. Front Neurosci 4:200

    Article  Google Scholar 

  48. Wildie M, Shanahan M (2012) Hierarchical clustering identifies hub nodes in a model of resting-state brain activity. In: The 2012 international joint conference on neural networks (IJCNN). IEEE, pp 1–6

    Google Scholar 

  49. Rieubland S, Roth A, Häusser M (2014) Structured connectivity in cerebellar inhibitory networks. Neuron 81:913

    Article  Google Scholar 

  50. Ashourvan A, Telesford QK, Verstynen T, Vettel JM, Bassett DS (2019) Multi-scale detection of hierarchical community architecture in structural and functional brain networks. PLoS ONE 14:e0215520

    Article  Google Scholar 

  51. Zhou C, Zemanová L, Zamora G, Hilgetag CC, Kurths J (2006) Hierarchical organization unveiled by functional connectivity in complex brain networks. Phys Rev Lett 97:238103

    Article  ADS  Google Scholar 

  52. Zhou C, Zemanová L, Zamora-López G, Hilgetag CC, Kurths J (2007) Structure-function relationship in complex brain networks expressed by hierarchical synchronization. New J Phys 9:178

    Article  Google Scholar 

  53. Chouzouris T, Omelchenko I, Zakharova A, Hlinka J, Jiruska P, Schöll E (2018) Chimera states in brain networks: empirical neural vs. modular fractal connectivity. Chaos 28:045112

    Google Scholar 

  54. Hövel P, Viol A, Loske P, Merfort L, Vuksanović V (2018) Synchronization in functional networks of the human brain. J Nonlinear Sci

    Google Scholar 

  55. Wang R, Lin P, Liu M, Wu Y, Zhou T, Zhou C (2019) Hierarchical connectome modes and critical state jointly maximize human brain functional diversity. Phys Rev Lett 123:038301

    Article  ADS  Google Scholar 

  56. Ramlow L, Sawicki J, Zakharova A, Hlinka J, Claussen JC, Schöll E (2019) Partial synchronization in empirical brain networks as a model for unihemispheric sleep. EPL 126:50007

    Article  Google Scholar 

  57. Gerster M, Berner R, Sawicki J, Zakharova A, Skoch A, Hlinka J, Lehnertz K, Schöll E (2020) FitzHugh-Nagumo oscillators on complex networks mimic epileptic-seizure-related synchronization phenomena. Chaos 30:123130

    Article  ADS  MathSciNet  Google Scholar 

  58. Bassett DS, Zurn P, Gold JI (2018) On the nature and use of models in network neuroscience. Nat Rev Neurosci 19:566

    Article  Google Scholar 

  59. De Domenico M, Solé-Ribalta A, Cozzo E, Kivelä M, Moreno Y, Porter MA, Gómez S, Arenas A (2013) Mathematical formulation of multilayer networks. Phys Rev X 3:041022

    MATH  Google Scholar 

  60. Boccaletti S, Bianconi G, Criado R, del Genio CI, Gómez-Gardeñes J, Romance M, Sendiña Nadal I, Wang Z, Zanin M (2014) The structure and dynamics of multilayer networks. Phys Rep 544:1

    Google Scholar 

  61. Kivelä M, Arenas A, Barthélemy M, Gleeson JP, Moreno Y, Porter MA (2014) Multilayer networks. J Complex Netw 2:203

    Article  Google Scholar 

  62. De Domenico M, Nicosia V, Arenas A, Latora V (2015) Structural reducibility of multilayer networks. Nat Commun 6:6864

    Article  ADS  Google Scholar 

  63. Belykh IV, Carter D, Jeter R (2019) Synchronization in multilayer networks: when good links go bad. SIAM J Appl Dyn Syst 18:2267

    Article  MathSciNet  Google Scholar 

  64. Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci USA 99:7821

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Amato R, Díaz-Guilera A, Kleineberg KK (2017) Interplay between social influence and competitive strategical games in multiplex networks. Sci Rep 7:7087

    Article  ADS  Google Scholar 

  66. Amato R, Kouvaris NE, San Miguel M, Díaz-Guilera A (2017) Opinion competition dynamics on multiplex networks. New J Phys 19:123019

    Google Scholar 

  67. Cardillo A, Zanin M, Gòmez Gardeñes J, Romance M, del Amo AG, Boccaletti S (2013) Modeling the multi-layer nature of the european air transport network: resilience and passengers re-scheduling under random failures. Eur Phys J ST 215:23

    Google Scholar 

  68. Pereda AE (2014) Electrical synapses and their functional interactions with chemical synapses. Nat Rev Neurosci 15:250

    Article  Google Scholar 

  69. Majhi S, Bera BK, Ghosh D, Perc M (2019) Chimera states in neuronal networks: a review. Phys Life Rev 28:100

    Article  ADS  Google Scholar 

  70. Bera BK, Rakshit S, Ghosh D (2019) Intralayer synchronization in neuronal multiplex network. Eur Phys J Spec Top 228:2441

    Article  Google Scholar 

  71. Bentley B, Branicky R, Barnes CL, Chew YL, Yemini E, Bullmore ET, Vétes PE, Schafer WR (2016) The multilayer connectome of caenorhabditis elegans. PLoS Comput Biol 12:e1005283

    Article  ADS  Google Scholar 

  72. Battiston F, Nicosia V, Chavez M, Latora V (2017) Multilayer motif analysis of brain networks. Chaos 27:047404

    Article  ADS  MathSciNet  Google Scholar 

  73. Vaiana M, Muldoon SF (2018) Multilayer brain networks. J Nonlinear Sci, pp 1–23

    Google Scholar 

  74. Zhang X, Boccaletti S, Guan S, Liu Z (2015) Explosive synchronization in adaptive and multilayer networks. Phys Rev Lett 114:038701

    Article  ADS  Google Scholar 

  75. Maksimenko VA, Makarov VV, Bera BK, Ghosh D, Dana SK, Goremyko MV, Frolov NS, Koronovskii AA, Hramov AE (2016) Excitation and suppression of chimera states by multiplexing. Phys Rev E 94:052205

    Article  ADS  Google Scholar 

  76. Sevilla-Escoboza R, Sendiña-Nadal I, Leyva I, Gutiérrez R, Buldú JM, Boccaletti S (2016) Inter-layer synchronization in multiplex networks of identical layers. Chaos 26:065304

    Article  MathSciNet  MATH  Google Scholar 

  77. Jalan S, Singh A (2016) Cluster synchronization in multiplex networks. Europhys Lett 113:30002

    Article  Google Scholar 

  78. Requejo RJ, Díaz-Guilera A (2016) Replicator dynamics with diffusion on multiplex networks. Phys Rev E 94:022301

    Article  ADS  Google Scholar 

  79. Ghosh S, Kumar A, Zakharova A, Jalan S (2016) Birth and death of chimera: interplay of delay and multiplexing. Europhys Lett 115:60005

    Article  ADS  Google Scholar 

  80. Leyva I, Sevilla-Escoboza R, Sendiña-Nadal I, Gutiérrez R, Buldú JM, Boccaletti S (2017) Inter-layer synchronization in non-identical multi-layer networks. Sci Rep 7:45475

    Article  ADS  MATH  Google Scholar 

  81. Andrzejak RG, Ruzzene G, Malvestio I (2017) Generalized synchronization between chimera states. Chaos 27:053114

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. Frolov NS, Maksimenko VA, Makarov VV, Kirsanov D, Hramov AE, Kurths J (2018) Macroscopic chimeralike behavior in a multiplex network. Phys Rev E 98:022320

    Article  ADS  Google Scholar 

  83. Pitsik E, Makarov V, Kirsanov D, Frolov NS, Goremyko M, Li X, Wang Z, Hramov AE, Boccaletti S (2018) Inter-layer competition in adaptive multiplex network. New J Phys 20:075004

    Article  Google Scholar 

  84. Leyva I, Sendiña-Nadal I, Sevilla-Escoboza R, Vera-Avila VP, Chholak P, Boccaletti S (2018) Relay synchronization in multiplex networks. Sci Rep 8:8629

    Article  ADS  Google Scholar 

  85. Ghosh S, Zakharova A, Jalan S (2018) Non-identical multiplexing promotes chimera states. Chaos, Solitons Fractals 106:56

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. Mikhaylenko M, Ramlow L, Jalan S, Zakharova A (2019) Weak multiplexing in neural networks: Switching between chimera and solitary states. Chaos 29:023122

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. Sawicki J, Omelchenko I, Zakharova A, Schöll E (2018) Synchronization scenarios of chimeras in multiplex networks. Eur Phys J Spec Top 227:1161

    Article  Google Scholar 

  88. Sawicki J, Omelchenko I, Zakharova A, Schöll E (2018) Delay controls chimera relay synchronization in multiplex networks. Phys Rev E 98:062224

    Article  ADS  Google Scholar 

  89. Semenova N, Zakharova A (2018) Weak multiplexing induces coherence resonance. Chaos 28:051104

    Article  ADS  MathSciNet  Google Scholar 

  90. Omelchenko I, Hülser T, Zakharova A, Schöll E (2019) Control of chimera states in multilayer networks. Front Appl Math Stat 4:67

    Article  Google Scholar 

  91. Rybalova E, Vadivasova T, Strelkova G, Anishchenko V, Zakharova A (2019) Forced synchronization of a multilayer heterogeneous network of chaotic maps in the chimera state mode. Chaos 29:033134

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. Nikitin D, Omelchenko I, Zakharova A, Avetyan M, Fradkov AL, Schöll E (2019) Complex partial synchronization patterns in networks of delay-coupled neurons. Phil Trans R Soc A 377:20180128

    Article  ADS  MathSciNet  Google Scholar 

  93. Blaha KA, Huang K, Della Rossa F, Pecora LM, Hossein-Zadeh M, Sorrentino F (2019) Cluster synchronization in multilayer networks: a fully analog experiment with lc oscillators with physically dissimilar coupling. Phys Rev Lett 122:014101

    Google Scholar 

  94. Jalan S, Kumar A, Leyva I (2019) Explosive synchronization in frequency displaced multiplex networks. Chaos 29:041102

    Article  ADS  MathSciNet  MATH  Google Scholar 

  95. Berner R, Sawicki J, Schöll E (2020) Birth and stabilization of phase clusters by multiplexing of adaptive networks. Phys Rev Lett 124:088301

    Article  ADS  MathSciNet  Google Scholar 

  96. Drauschke F, Sawicki J, Berner R, Omelchenko I, Schöll E (2020) Effect of topology upon relay synchronization in triplex neuronal networks. Chaos 30:051104

    Article  ADS  MathSciNet  Google Scholar 

  97. Yamakou ME, Hjorth PG, Martens EA (2020) Optimal self-induced stochastic resonance in multiplex neural networks: electrical vs. chemical synapses. Front Comput Neurosci 14:62

    Google Scholar 

  98. Kuramoto Y (1984) Chemical oscillations, waves and turbulence. Springer, Berlin

    Book  MATH  Google Scholar 

  99. Pikovsky A, Rosenblum M, Kurths J (2001) Synchronization: a universal concept in nonlinear sciences, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  100. Yanchuk S, Maistrenko Y, Mosekilde E (2001) Partial synchronization and clustering in a system of diffusively coupled chaotic oscillators. Math Comp Simul 54:491

    Article  MathSciNet  MATH  Google Scholar 

  101. Sorrentino F, Ott E (2007) Network synchronization of groups. Phys Rev E 76:056114

    Article  ADS  MathSciNet  Google Scholar 

  102. Belykh IV, Hasler M (2011) Mesoscale and clusters of synchrony in networks of bursting neurons. Chaos 21:016106

    Article  ADS  MathSciNet  MATH  Google Scholar 

  103. Dahms T, Lehnert J, Schöll E (2012) Cluster and group synchronization in delay-coupled networks. Phys Rev E 86:016202

    Article  ADS  Google Scholar 

  104. Nicosia V, Valencia M, Chavez M, Díaz-Guilera A, Latora V (2013) Remote synchronization reveals network symmetries and functional modules. Phys Rev Lett 110:174102

    Article  ADS  Google Scholar 

  105. Golubitsky M, Stewart I (2016) Rigid patterns of synchrony for equilibria and periodic cycles in network dynamics. Chaos 26:094803

    Article  ADS  MathSciNet  MATH  Google Scholar 

  106. Zhang Y, Motter AE (2020) Symmetry-independent stability analysis of synchronization patterns. SIAM Rev 62:817

    Article  MathSciNet  MATH  Google Scholar 

  107. Bick C, Goodfellow M, Laing CR, Martens EA (2020) Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a review. J Math Neurosci 10:9

    Article  MathSciNet  MATH  Google Scholar 

  108. Strogatz SH (2000) From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys D 143:1

    Article  MathSciNet  MATH  Google Scholar 

  109. Strogatz SH (2001) Exploring complex networks. Nature 410:268

    Article  ADS  MATH  Google Scholar 

  110. Boccaletti S, Kurths J, Osipov G, Valladares DL, Zhou CS (2002) The synchronization of chaotic systems. Phys Rep 366:1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  111. Strogatz SH (2003) Sync: how order emerges from chaos in the universe, nature, and daily life. Hyperion, New York

    Google Scholar 

  112. Nishikawa T, Motter AE (2006) Synchronization is optimal in nondiagonalizable networks. Phys Rev E 73:065106

    Article  ADS  Google Scholar 

  113. Arenas A, Díaz-Guilera A, Kurths J, Moreno Y, Zhou C (2008) Synchronization in complex networks. Phys Rep 469:93

    Article  ADS  MathSciNet  Google Scholar 

  114. Balanov AG, Janson NB, Postnov DE, Sosnovtseva OV (2009) Synchronization: from simple to complex. Springer, Berlin

    MATH  Google Scholar 

  115. Nekorkin VI (2015) Introduction to nonlinear oscillations. Wiley, Weinheim

    Book  MATH  Google Scholar 

  116. Maia DMN, Macau EEN, Pereira T, Yanchuk S (2018) Synchronization in networks with strongly delayed couplings. Discr Cont Dyn Syst B 23:3461

    MathSciNet  MATH  Google Scholar 

  117. Singer W (1999) Neuronal synchrony: a versatile code review for the definition of relations? Neuron 24:49

    Article  Google Scholar 

  118. Fell J, Axmacher N (2011) The role of phase synchronization in memory processes. Nat Rev Neurosci 12:105

    Article  Google Scholar 

  119. Hammond C, Bergman H, Brown P (2007) Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci 30:357

    Article  Google Scholar 

  120. Adamchic I, Hauptmann C, Barnikol UB, Pawelczyk N, Popovych OV, Barnikol TT, Silchenko AN, Volkmann J, Deuschl G, Meissner WG, Maarouf M, Sturm V, Freund HJ, Tass PA (2014) Coordinated reset neuromodulation for Parkinson’s disease: proof-of-concept study. Movement Disord 29:1679

    Article  Google Scholar 

  121. Jiruska P, de Curtis M, Jefferys JGR, Schevon CA, Schiff SJ, Schindler K (2013) Synchronization and desynchronization in epilepsy: controversies and hypotheses. J Phys 591(4):787

    Google Scholar 

  122. Jirsa VK, Stacey WC, Quilichini PP, Ivanov AI, Bernard C (2014) On the nature of seizure dynamics. Brain 137:2210

    Article  Google Scholar 

  123. Rothkegel A, Lehnertz K (2014) Irregular macroscopic dynamics due to chimera states in small-world networks of pulse-coupled oscillators. New J Phys 16:055006

    Article  Google Scholar 

  124. Andrzejak RG, Rummel C, Mormann F, Schindler K (2016) All together now: analogies between chimera state collapses and epileptic seizures. Sci Rep 6:23000

    Article  ADS  Google Scholar 

  125. Olmi S, Petkoski S, Guye M, Bartolomei F, Jirsa VK (2019) Controlling seizure propagation in large-scale brain networks. PLoS Comp Biol 15:e1006805

    Article  ADS  Google Scholar 

  126. Tass PA, Adamchic I, Freund HJ, von Stackelberg T, Hauptmann C (2012) Counteracting tinnitus by acoustic coordinated reset neuromodulation. Restor Neurol Neurosci 30:137

    Google Scholar 

  127. Tass PA, Popovych OV (2012) Unlearning tinnitus-related cerebral synchrony with acoustic coordinated reset stimulation: theoretical concept and modelling. Biol Cybern 106:27

    Article  Google Scholar 

  128. Uhlhaas PJ, Singer W (2006) Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52:155

    Article  Google Scholar 

  129. Buck J, Buck E (1968) Mechanism of rhythmic synchronous flashing of fireflies: fireflies of southeast asia may use anticipatory time-measuring in synchronizing their flashing. Science 159:1319

    Article  ADS  Google Scholar 

  130. Rohden M, Sorge A, Timme M, Witthaut D (2012) Self-organized synchronization in decentralized power grids. Phys Rev Lett 109:064101

    Article  ADS  Google Scholar 

  131. Motter AE, Myers SA, Anghel M, Nishikawa T (2013) Spontaneous synchrony in power-grid networks. Nat Phys 9:191

    Article  Google Scholar 

  132. Menck PJ, Heitzig J, Kurths J, Schellnhuber HJ (2014) How dead ends undermine power grid stability. Nat Commun 5:3969

    Article  ADS  Google Scholar 

  133. Schäfer B, Witthaut D, Timme M, Latora V (2018) Dynamically induced cascading failures in power grids. Nat Commun 9:1975

    Article  ADS  Google Scholar 

  134. Kuehn C, Throm S (2019) Power network dynamics on graphons. SIAM J Appl Dyn Syst 79:1271

    Article  MathSciNet  MATH  Google Scholar 

  135. Taher H, Olmi S, Schöll E (2019) Enhancing power grid synchronization and stability through time delayed feedback control. Phys Rev E 100:062306

    Article  ADS  Google Scholar 

  136. Totz CH, Olmi S, Schöll E (2020) Control of synchronization in two-layer power grids. Phys Rev E 102:022311

    Article  ADS  MathSciNet  Google Scholar 

  137. Berner R, Yanchuk S, Schöll E (2021) What adaptive neuronal networks teach us about power grids. Phys Rev E 103:042315

    Google Scholar 

  138. Schöll E, Schuster HG (eds) (2008) Handbook of chaos control. Wiley-VCH, Weinheim (second completely revised and enlarged edition)

    Google Scholar 

  139. Schöll E, Klapp SHL, Hövel P (2016) Control of self-organizing nonlinear systems. Springer, Berlin

    Book  MATH  Google Scholar 

  140. Kuramoto Y, Battogtokh D (2002) Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlin Phen Complex Sys 5:380

    Google Scholar 

  141. Abrams DM, Strogatz SH (2004) Chimera states for coupled oscillators. Phys Rev Lett 93:174102

    Article  ADS  Google Scholar 

  142. Motter AE (2010) Nonlinear dynamics: spontaneous synchrony breaking. Nat Phys 6:164

    Article  Google Scholar 

  143. Panaggio MJ, Abrams DM (2015) Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity 28:R67

    Article  ADS  MathSciNet  MATH  Google Scholar 

  144. Yao N, Zheng Z (2016) Chimera states in spatiotemporal systems: theory and applications. Int J Mod Phys B 30:1630002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  145. Schöll E (2016) Chimera states and excitation waves in networks with complex topologies. AIP Conf Proc 1738:210012

    Article  Google Scholar 

  146. Omel’chenko OE, Knobloch E (2019) Chimerapedia: coherence-incoherence patterns in one, two and three dimensions. New J Phys 21:093034

    Article  MathSciNet  Google Scholar 

  147. Schöll E, Zakharova A, Andrzejak RG (2019) Editorial on the research topic: chimera states in complex networks. Front Appl Math Stat 5:62. https://doi.org/10.3389/fams.2019.00062

    Article  Google Scholar 

  148. Zakharova A (2020) Chimera patterns in networks: interplay between dynamics, structure, noise, and delay, understanding complex systems. Springer, Berlin

    Book  MATH  Google Scholar 

  149. Zhang Y, Nicolaou ZG, Hart JD, Roy R, Motter AE (2020) Critical switching in globally attractive chimeras. Phys Rev X 10:011044

    Google Scholar 

  150. Hagerstrom AM, Murphy TE, Roy R, Hövel P, Omelchenko I, Schöll E (2012) Experimental observation of chimeras in coupled-map lattices. Nat Phys 8:658

    Article  Google Scholar 

  151. Tinsley MR, Nkomo S, Showalter K (2012) Chimera and phase cluster states in populations of coupled chemical oscillators. Nat Phys 8:662

    Article  Google Scholar 

  152. Totz J, Snari R, Yengi D, Tinsley MR, Engel H, Showalter K (2015) Phase-lag synchronization in networks of coupled chemical oscillators. Phys Rev E 92:022819

    Article  ADS  Google Scholar 

  153. Totz J, Rode J, Tinsley MR, Showalter K, Engel H (2018) Spiral wave chimera states in large populations of coupled chemical oscillators. Nat Phys 14:282

    Article  Google Scholar 

  154. Martens EA, Thutupalli S, Fourriere A, Hallatschek O (2013) Chimera states in mechanical oscillator networks. Proc Natl Acad Sci USA 110:10563

    Article  ADS  Google Scholar 

  155. Kapitaniak T, Kuzma P, Wojewoda J, Czolczynski K, Maistrenko Y (2014) Imperfect chimera states for coupled pendula. Sci Rep 4:6379

    Article  ADS  Google Scholar 

  156. Olmi S, Martens EA, Thutupalli S, Torcini A (2015) Intermittent chaotic chimeras for coupled rotators. Phys Rev E 92:030901(R)

    Article  ADS  Google Scholar 

  157. Pelka K, Peano V, Xuereb A (2020) Chimera states in small optomechanical arrays. Phys Rev Res 2:013201

    Article  Google Scholar 

  158. Larger L, Penkovsky B, Maistrenko Y (2013) Virtual chimera states for delayed-feedback systems. Phys Rev Lett 111:054103

    Article  ADS  Google Scholar 

  159. Larger L, Penkovsky B, Maistrenko Y (2015) Laser chimeras as a paradigm for multistable patterns in complex systems. Nat Commun 6:7752

    Article  ADS  Google Scholar 

  160. Wickramasinghe M, Kiss IZ (2013) Spatially organized dynamical states in chemical oscillator networks: synchronization, dynamical differentiation, and chimera patterns. PLoS ONE 8:e80586

    Article  ADS  Google Scholar 

  161. Wickramasinghe M, Kiss IZ (2014) Spatially organized partial synchronization through the chimera mechanism in a network of electrochemical reactions. Phys Chem Chem Phys 16:18360

    Article  Google Scholar 

  162. Schmidt L, Schönleber K, Krischer K, García-Morales V (2014) Coexistence of synchrony and incoherence in oscillatory media under nonlinear global coupling. Chaos 24:013102

    Article  ADS  MathSciNet  Google Scholar 

  163. Ocampo-Espindola JL, Bick C, Kiss IZ (2019) Weak chimeras in modular electrochemical oscillator networks. Front Appl Math Stat 5:38

    Article  Google Scholar 

  164. Gambuzza LV, Buscarino A, Chessari S, Fortuna L, Meucci R, Frasca M (2014) Experimental investigation of chimera states with quiescent and synchronous domains in coupled electronic oscillators. Phys Rev E 90:032905

    Article  ADS  Google Scholar 

  165. Rosin DP, Rontani D, Haynes N, Schöll E, Gauthier DJ (2014) Transient scaling and resurgence of chimera states in coupled Boolean phase oscillators. Phys Rev E 90:030902(R)

    Article  ADS  Google Scholar 

  166. Rattenborg NC, Amlaner CJ, Lima SL (2000) Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep. Neurosci Biobehav Rev 24:817

    Article  Google Scholar 

  167. Rattenborg NC, Voirin B, Cruz SM, Tisdale R, Dell’Omo G, Lipp HP, Wikelski M, Vyssotski AL (2016) Evidence that birds sleep in mid-flight. Nat Commun 7:12468

    Article  ADS  Google Scholar 

  168. Bick C, Martens EA (2015) Controlling chimeras. New J Phys 17:033030

    Article  MathSciNet  MATH  Google Scholar 

  169. Omelchenko I, Omel’chenko OE, Zakharova A, Wolfrum M, Schöll E (2016) Tweezers for chimeras in small networks. Phys Rev Lett 116:114101

    Article  ADS  Google Scholar 

  170. Omelchenko I, Omel’chenko OE, Zakharova A, Schöll E (2018) Optimal design of tweezer control for chimera states. Phys Rev E 97:012216

    Article  ADS  Google Scholar 

  171. Ruzzene G, Omelchenko I, Schöll E, Zakharova A, Andrzejak RG (2019) Controlling chimera states via minimal coupling modification. Chaos 29:051103

    Article  ADS  MathSciNet  MATH  Google Scholar 

  172. Sawicki J (2019) Delay controlled partial synchronization in complex networks, Springer Theses. Springer, Heidelberg

    Google Scholar 

  173. Pazó D, Deza RR, Pérez-Muñuzuri V (2005) Parity-breaking front bifurcation in bistable media: link between discrete and continuous versions. Phys Lett A 340:132

    Article  ADS  MATH  Google Scholar 

  174. Zakharova A, Kapeller M, Schöll E (2014) Chimera death: Symmetry breaking in dynamical networks. Phys Rev Lett 112:154101

    Article  ADS  Google Scholar 

  175. Maistrenko Y, Penkovsky B, Rosenblum M (2014) Solitary state at the edge of synchrony in ensembles with attractive and repulsive interactions. Phys Rev E 89:060901

    Article  ADS  Google Scholar 

  176. Ashwin P, Burylko O (2015) Weak chimeras in minimal networks of coupled phase oscillators. Chaos 25:013106

    Article  ADS  MathSciNet  MATH  Google Scholar 

  177. Klinshov V, Lücken L, Shchapin D, Nekorkin VI, Yanchuk S (2015) Multistable jittering in oscillators with pulsatile delayed feedback. Phys Rev Lett 114:178103

    Article  ADS  Google Scholar 

  178. Bi H, Hu X, Boccaletti S, Wang X, Zou Y, Liu Z, Guan S (2016) Coexistence of quantized, time dependent, clusters in globally coupled oscillators. Phys Rev Lett 117:204101

    Article  ADS  Google Scholar 

  179. Wu H, Dhamala M (2018) Dynamics of kuramoto oscillators with time-delayed positive and negative couplings. Phys Rev E 98:032221

    Article  ADS  MathSciNet  Google Scholar 

  180. Teichmann E, Rosenblum M (2019) Solitary states and partial synchrony in oscillatory ensembles with attractive and repulsive interactions. Chaos 29:093124

    Article  ADS  MathSciNet  MATH  Google Scholar 

  181. Chen B, Engelbrecht JR, Mirollo RE (2019) Dynamics of the Kuramoto-Sakaguchi oscillator network with asymmetric order parameter. Chaos 29:013126

    Article  ADS  MathSciNet  MATH  Google Scholar 

  182. Jaros P, Maistrenko Y, Kapitaniak T (2015) Chimera states on the route from coherence to rotating waves. Phys Rev E 91:022907

    Article  ADS  Google Scholar 

  183. Jaros P, Brezetsky S, Levchenko R, Dudkowski D, Kapitaniak T, Maistrenko Y (2018) Solitary states for coupled oscillators with inertia. Chaos 28:011103

    Article  ADS  MathSciNet  MATH  Google Scholar 

  184. Kruk N, Maistrenko Y, Koeppl H (2020) Solitary states in the mean-field limit. Chaos 30:111104

    Article  ADS  MathSciNet  MATH  Google Scholar 

  185. Berner R, Polanska A, Schöll E, Yanchuk S (2020) Solitary states in adaptive nonlocal oscillator networks. Eur Phys J Spec Top 229:2183

    Article  Google Scholar 

  186. Hellmann F, Schultz P, Jaros P, Levchenko R, Kapitaniak T, Kurths J, Maistrenko Y (2020) Network-induced multistability through lossy coupling and exotic solitary states. Nat Commun 11:592

    Article  ADS  Google Scholar 

  187. Sathiyadevi K, Chandrasekar VK, Senthilkumar DV, Lakshmanan M (2019) Long-range interaction induced collective dynamical behaviors. J Phys A: Math Theor 52:184001

    Article  ADS  MathSciNet  Google Scholar 

  188. Rybalova E, Anishchenko VS, Strelkova GI, Zakharova A (2019) Solitary states and solitary state chimera in neural networks. Chaos 29:071106

    Article  ADS  MathSciNet  MATH  Google Scholar 

  189. Schülen L, Ghosh S, Kachhvah AD, Zakharova A, Jalan S (2019) Delay engineered solitary states in complex networks. Chaos, Solitons Fractals 128:290

    Article  ADS  MathSciNet  Google Scholar 

  190. Zaks MA, Tomov P (2016) Onset of time dependence in ensembles of excitable elements with global repulsive coupling. Phys Rev E 93:020201

    Article  ADS  Google Scholar 

  191. Rybalova E, Semenova N, Strelkova G, Anishchenko V (2017) Transition from complete synchronization to spatio-temporal chaos in coupled chaotic systems with nonhyperbolic and hyperbolic attractors. Eur Phys J Spec Top 226:1857

    Article  Google Scholar 

  192. Semenov V, Zakharova A, Maistrenko Y, Schöll E (2016) Delayed-feedback chimera states: forced multiclusters and stochastic resonance. Europhys Lett 115:10005

    Article  ADS  Google Scholar 

  193. Semenova N, Vadivasova T, Anishchenko V (2018) Mechanism of solitary state appearance in an ensemble of nonlocally coupled Lozi maps. Eur Phys J Spec Top 227:1173

    Article  Google Scholar 

  194. Porter MA (2020) Nonlinearity + Networks: A 2020 Vision, pp 131–159 chapter 6, Springer International Publishing, ISBN 978-3-030-44992-6

    Google Scholar 

  195. Holme P, Saramäki J (2012) Temporal networks. Phys Rep 519:97

    Article  ADS  Google Scholar 

  196. Holme P (2015) Modern temporal network theory: a colloquium. Eur Phys J B 88:1

    Article  Google Scholar 

  197. Gross T, Sayama H (2009) Adaptive networks. Springer, Berlin

    Book  Google Scholar 

  198. Hebb D (1949) The organization of behavior: a neuropsychological theory. Wiley, New York, new edition ed

    Google Scholar 

  199. Brown TH, Chapman PF, Kairiss EW, Keenan CL (1988) Long-term synaptic potentiation. Science 242:724

    Article  ADS  Google Scholar 

  200. Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31

    Article  ADS  Google Scholar 

  201. Gerstner W, Kempter R, von Hemmen JL, Wagner H (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383:76

    Article  ADS  Google Scholar 

  202. Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213

    Google Scholar 

  203. Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464

    Google Scholar 

  204. Abbott LF, Nelson S (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3:1178

    Article  Google Scholar 

  205. Bi GQ, Poo MM (2001) Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu Rev Neurosci 24:139

    Google Scholar 

  206. Caporale N, Dan Y (2008) Spike timing-dependent plasticity: a Hebbian learning rule. Annu Rev Neurosci 31:25

    Article  Google Scholar 

  207. Meisel C, Gross T (2009) Adaptive self-organization in a realistic neural network model. Phys Rev E 80:061917

    Article  ADS  Google Scholar 

  208. Lücken L, Popovych OV, Tass P, Yanchuk S (2016) Noise-enhanced coupling between two oscillators with long-term plasticity. Phys Rev E 93:032210

    Article  ADS  MathSciNet  Google Scholar 

  209. Jain S, Krishna S (2001) A model for the emergence of cooperation, interdependence, and structure in evolving networks. Proc Natl Acad Sci 98:543

    Article  ADS  Google Scholar 

  210. Gross T, D’Lima CJD, Blasius B (2006) Epidemic dynamics on an adaptive network. Phys Rev Lett 96:208701

    Article  ADS  Google Scholar 

  211. Gross T, Blasius B (2008) Adaptive coevolutionary networks: a review. J R Soc Interface 5:259

    Article  Google Scholar 

  212. Horstmeyer L, Kuehn C (2020) Adaptive voter model on simplicial complexes. Phys Rev E 101:022305

    Article  ADS  MathSciNet  Google Scholar 

  213. Markram H, Gerstner W, Sjöström PJ (2011) A history of spike-timing-dependent plasticity. Front Synaptic Neurosci 3

    Google Scholar 

  214. Mercier E, Wolfersberger D, Sciamanna M (2014) Bifurcation to chaotic low-frequency fluctuations in a laser diode with phase-conjugate feedback. Opt Lett 39:4021

    Article  ADS  Google Scholar 

  215. Hoppensteadt FC, Izhikevich EM (1996) Synaptic organizations and dynamical properties of weakly connected neural oscillators ii. learning phase information. Biol Cybern 75:129

    Google Scholar 

  216. Seliger P, Young SC, Tsimring LS (2002) Plasticity and learning in a network of coupled phase oscillators. Phys Rev E 65:041906

    Article  ADS  MathSciNet  MATH  Google Scholar 

  217. Câteau H, Kitano K, Fukai T (2008) Interplay between a phase response curve and spike-timing-dependent plasticity leading to wireless clustering. Phys Rev E 77:051909

    Article  ADS  Google Scholar 

  218. Miller A, Jin DZ (2013) Potentiation decay of synapses and length distributions of synfire chains self-organized in recurrent neural networks. Phys Rev E 88:062716

    Article  ADS  Google Scholar 

  219. Mikkelsen K, Imparato A, Torcini A (2014) Sisyphus effect in pulse-coupled excitatory neural networks with spike-timing-dependent plasticity. Phys Rev E 89:062701

    Article  ADS  Google Scholar 

  220. Clopath C, Büsing L, Vasilaki E, Gerstner W (2010) Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nat Neurosci 13:344

    Article  Google Scholar 

  221. Tass PA, Majtanik M (2006) Long-term anti-kindling effects of desynchronizing brain stimulation: a theoretical study. Biol Cybern 94:58

    Article  MathSciNet  MATH  Google Scholar 

  222. Popovych OV, Yanchuk S, Tass P (2013) Self-organized noise resistance of oscillatory neural networks with spike timing-dependent plasticity. Sci Rep 3:2926

    Article  ADS  Google Scholar 

  223. Ito J, Kaneko K (2001) Spontaneous structure formation in a network of chaotic units with variable connection strengths. Phys Rev Lett 88:028701

    Article  ADS  Google Scholar 

  224. Ito J, Kaneko K (2003) Spontaneous structure formation in a network of dynamic elements. Phys Rev E 67:046226

    Article  ADS  Google Scholar 

  225. Stam CJ, Hillebrand A, Wang H, Van Mieghem P (2010) Emergence of modular structure in a large-scale brain network with interactions between dynamics and connectivity. Front Comput Neurosci 4:133

    Article  Google Scholar 

  226. Gutiérrez R, Amann A, Assenza S, Gómez-Gardeñes J, Latora V, Boccaletti S (2011) Emerging meso- and macroscales from synchronization of adaptive networks. Phys Rev Lett 107:234103

    Article  ADS  Google Scholar 

  227. Assenza S, Gutiérrez R, Gómez-Gardeñes J, Latora V, Boccaletti S (2011) Emergence of structural patterns out of synchronization in networks with competitive interactions. Sci Rep 1:99

    Article  ADS  Google Scholar 

  228. Yuan WJ, Zhou C (2011) Interplay between structure and dynamics in adaptive complex networks: Emergence and amplification of modularity by adaptive dynamics. Phys Rev E 84:016116

    Article  ADS  Google Scholar 

  229. Aoki T, Aoyagi T (2012) Scale-free structures emerging from co-evolution of a network and the distribution of a diffusive resource on it. Phys Rev Lett 109:208702

    Article  ADS  Google Scholar 

  230. Winkler M, Butscher S, Kinzel W (2012) Pulsed chaos synchronization in networks with adaptive couplings. Phys Rev E 86:016203

    Article  ADS  Google Scholar 

  231. Aoki T, Yawata K, Aoyagi T (2015) Self-organization of complex networks as a dynamical system. Phys Rev E 91:012908

    Article  ADS  MathSciNet  Google Scholar 

  232. Botella-Soler V, Glendinning P (2012) Emergence of hierarchical networks and polysynchronous behaviour in simple adaptive systems. Europhys Lett 97:50004

    Article  ADS  Google Scholar 

  233. Botella-Soler V, Glendinning P (2014) Hierarchy and polysynchrony in an adaptive network. Phys Rev E 89:062809

    Article  ADS  Google Scholar 

  234. Popovych OV, Xenakis MN, Tass PA (2015) The spacing principle for unlearning abnormal neuronal synchrony. PLoS ONE 10:e0117205

    Article  Google Scholar 

  235. Chakravartula S, Indic P, Sundaram B, Killingback T (2017) Emergence of local synchronization in neuronal networks with adaptive couplings. PLoS ONE 12:e0178975

    Article  Google Scholar 

  236. Röhr V, Berner R, Lameu EL, Popovych OV, Yanchuk S (2019) Frequency cluster formation and slow oscillations in neural populations with plasticity. PLoS ONE 14:e0225094

    Article  Google Scholar 

  237. Rubinov M, Sporns O, Van Leeuwen C, Breakspear M (2009) Symbiotic relationship between brain structure and dynamics. BMC Neurosci 10:55

    Article  Google Scholar 

  238. Hoppensteadt FC, Izhikevich EM (1999) Oscillatory neurocomputers with dynamic connectivity. Phys Rev Lett 82:2983

    Article  ADS  Google Scholar 

  239. Du C, Ma W, Chang T, Sheridan P, Lu WD (2015) Biorealistic implementation of synaptic functions with oxide memristors through internal ionic dynamics. Adv Funct Mater 25:4290

    Article  Google Scholar 

  240. John RA, Liu F, Chien NA, Kulkarni MR, Zhu C, Fu QD, Basu A, Liu Z, Mathews N (2018) Synergistic gating of electro-iono-photoactive 2d chalcogenide neuristors: coexistence of hebbian and homeostatic synaptic metaplasticity. Adv Mater 30:1800220

    Article  Google Scholar 

  241. Schöll E (1987) Nonequilibrium phase transitions in semiconductors. Springer, Berlin

    Book  Google Scholar 

  242. Shaw MP, Mitin VV, Schöll E, Grubin HL (1992) The physics of instabilities in solid state electron devices. Plenum Press, New York

    Book  Google Scholar 

  243. Schöll E (2001) Nonlinear spatio-temporal dynamics and chaos in semiconductors, Nonlinear science series, vol 10. Cambridge University Press, Cambridge

    Google Scholar 

  244. Pickett MD, Medeiros-Ribeiro G, Williams RS (2013) A scalable neuristor built with mott memristors. Nat Mater 12:114

    Article  ADS  Google Scholar 

  245. Waldrop MM (2013) Neuroelectronics: smart connections. Nature 503:22

    Article  ADS  Google Scholar 

  246. Ignatov M, Ziegler M, Hansen M, Petraru A, Kohlstedt H (2015) A memristive spiking neuron with firing rate coding. Front Neurosci 9:376

    Article  Google Scholar 

  247. Hansen M, Zahari F, Ziegler M, Kohlstedt H (2017) Double-barrier memristive devices for unsupervised learning and pattern recognition. Front Neurol Front Neurosci 11:91

    Google Scholar 

  248. Birkoben T, Drangmeister M, Zahari F, Yanchuk S, Hövel P, Kohlstedt H (2020) Slow-Fast Dynamics in a Chaotic System with Strongly Asymmetric Memristive Element. Int J Bifurc Chaos 30:08, 2050125

    Google Scholar 

  249. Schuman CD, Potok TE, Patton RM, Birdwell JD, Dean ME, Rose GS, Plank JS (2017) A survey of neuromorphic computing and neural networks in hardware. arXiv:1705.06963

  250. Markram H (2012) The human brain project. Sci Am 306:50

    Article  Google Scholar 

  251. Amunts K, Knoll AC, Lippert T, Pennartz CMA, Ryvlin P, Destexhe A, Jirsa VK, D’Angelo E, Bjaalie JG (2019) The human brain project-synergy between neuroscience, computing, informatics, and brain-inspired technologies. PLoS Biol 17:e3000344

    Article  Google Scholar 

  252. Koroshetz W, Gordon J, Adams A, Beckel-Mitchener A, Churchill J, Farber G, Freund M, Gnadt J, Hsu NS, Langhals N, Lisanby S, Liu G, Peng GCY, Steinmetz M, Talley E, White S (2018) The state of the NIH BRAIN initiative. J Neurosci 38:6427

    Article  Google Scholar 

  253. Pais D, Leonard NE (2014) Adaptive network dynamics and evolution of leadership in collective migration. Phys D 267:81

    Article  MathSciNet  MATH  Google Scholar 

  254. Sayama H, Pestov I, Schmidt J, Bush BJ, Wong C, Yamanoi J, Gross T (2013) Modeling complex systems with adaptive networks. Comput Math Appl 65:1645

    Article  MathSciNet  MATH  Google Scholar 

  255. Sayama H, Sinatra R (2015) Social diffusion and global drift on networks. Phys Rev E 91:032809

    Article  ADS  Google Scholar 

  256. Aoki T, Rocha LEC, Gross T (2016) Temporal and structural heterogeneities emerging in adaptive temporal networks. Phys Rev E 93:040301

    Article  ADS  Google Scholar 

  257. Iwasa M, Tanaka D (2010) Dimensionality of clusters in a swarm oscillator model. Phys Rev E 81:066214

    Article  ADS  Google Scholar 

  258. Iwasa M, Iida K, Tanaka D (2010) Hierarchical cluster structures in a one-dimensional swarm oscillator model. Phys Rev E 81:046220

    Article  ADS  Google Scholar 

  259. Gavalda A, Duch J, Gómez-Gardeñes J (2012) Reciprocal interactions out of congestion-free adaptive networks. Phys Rev E 85:026112

    Article  ADS  Google Scholar 

  260. Zhou C, Kurths J (2006) Dynamical weights and enhanced synchronization in adaptive complex networks. Phys Rev Lett 96:164102

    Article  ADS  Google Scholar 

  261. Zhu JF, Zhao M, Yu W, Zhou C, Wang BH (2010) Better synchronizability in generalized adaptive networks. Phys Rev E 81:026201

    Article  ADS  Google Scholar 

  262. De Lellis P, Bernardo M, Garofalo F (2008) Synchronization of complex networks through local adaptive coupling. Chaos 18:037110

    Article  ADS  MathSciNet  MATH  Google Scholar 

  263. Sorrentino F, Ott E (2008) Adaptive synchronization of dynamics on evolving complex networks. Phys Rev Lett 100:114101

    Article  ADS  Google Scholar 

  264. Wang L, Dai HP, Dong H, Cao YY, Sun YX (2008) Adaptive synchronization of weighted complex dynamical networks through pinning. Eur Phys J B 61:335

    Article  ADS  Google Scholar 

  265. De Lellis P, di Bernardo M, Garofalo F (2009) Decentralized adaptive control for synchronization and consensus of complex networks. In: Chiuso A, Fortuna L, Frasca M, Rizzo A, Schenato L, Zampieri S (eds) Modelling, estimation and control of networked complex systems. Springer, Berlin, pp 27–42

    Chapter  Google Scholar 

  266. De Lellis P, di Bernardo M, Garofalo F, Porfiri M (2010) Evolution of complex networks via edge snapping. IEEE Trans Circuits Syst I 57:2132

    Article  MathSciNet  Google Scholar 

  267. De Lellis P, Bernardo M, Russo G (2010) On QUAD, Lipschitz, and contracting vector fields for consensus and synchronization of networks. IEEE Trans Circuits Syst I 58:576

    Article  MathSciNet  Google Scholar 

  268. Schöll E, Selivanov AA, Lehnert J, Dahms T, Hövel P, Fradkov AL (2012) Control of synchronization in delay-coupled networks. Int J Mod Phys B 26:1246007

    Article  ADS  MATH  Google Scholar 

  269. Selivanov AA, Lehnert J, Dahms T, Hövel P, Fradkov AL, Schöll E (2012) Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators. Phys Rev E 85:016201

    Article  ADS  MATH  Google Scholar 

  270. Guzenko PY, Lehnert J, Schöll E (2013) Application of adaptive methods to chaos control of networks of Rössler systems. Cybern Phys 2:15

    Google Scholar 

  271. Lehnert J, Hövel P, Selivanov AA, Fradkov AL, Schöll E (2014) Controlling cluster synchronization by adapting the topology. Phys Rev E 90:042914

    Article  ADS  Google Scholar 

  272. Plotnikov SA, Lehnert J, Fradkov AL, Schöll E (2016) Adaptive control of synchronization in delay-coupled heterogeneous networks of FitzHugh-Nagumo nodes. Int J Bifurc Chaos 26:1650058

    Article  MathSciNet  MATH  Google Scholar 

  273. Acebrón JA, Bonilla LL, Pérez Vicente CJ, Ritort F, Spigler R (2005) The Kuramoto model: a simple paradigm for synchronization phenomena. Rev Mod Phys 77:137

    Google Scholar 

  274. Winfree AT (1980) The geometry of biological time. Springer, New York

    Book  MATH  Google Scholar 

  275. Hoppensteadt FC, Izhikevich EM (1997) Weakly connected neural networks. Springer, New York

    Book  MATH  Google Scholar 

  276. Pietras B, Daffertshofer A (2019) Network dynamics of coupled oscillators and phase reduction techniques. Phys Rep 819:1

    Article  ADS  MathSciNet  Google Scholar 

  277. Ashwin P, Coombes S, Nicks R (2016) Mathematical frameworks for oscillatory network dynamics in neuroscience. J Math Neurosci 6(2): 2 (2016)

    Google Scholar 

  278. Klinshov V, Yanchuk S, Stephan A, Nekorkin VI (2017) Phase response function for oscillators with strong forcing or coupling. Europhys Lett 118:50006

    Article  ADS  Google Scholar 

  279. Rosenblum M, Pikovsky A (2019) Numerical phase reduction beyond the first order approximation. Chaos 29:011105

    Article  ADS  MathSciNet  MATH  Google Scholar 

  280. Rosenblum M, Pikovsky A (2019) Nonlinear phase coupling functions: a numerical study. Philos Trans Royal Soc A 377:20190093

    Article  ADS  MathSciNet  Google Scholar 

  281. Ermentrout GB, Park Y, Wilson D (2019) Recent advances in coupled oscillator theory. Philos Trans Royal Soc A 377:20190092

    Article  ADS  MathSciNet  Google Scholar 

  282. Strogatz SH, Stewart I (1993) Coupled oscillators and biological synchronization. Sci Am 269:102

    Article  Google Scholar 

  283. Strogatz SH, Abraham D, McRobbie AD, Eckhardt B, Ott E (2005) Crowd synchrony on the millennium bridge. Nature 438:43

    Article  ADS  Google Scholar 

  284. Rodrigues FA, Peron TKDM, Ji P, Kurths J (2016) The Kuramoto model in complex networks. Phys Rep 610:1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  285. Watanabe S, Strogatz SH (1993) Integrability of a globally coupled oscillator array. Phys Rev Lett 70:2391

    Article  ADS  MathSciNet  MATH  Google Scholar 

  286. Watanabe S, Strogatz SH (1994) Constants of motion for superconducting Josephson arrays. Phys D 74:197

    Article  MATH  Google Scholar 

  287. Stewart I (2011) Phase oscillators with sinusoidal coupling interpreted in terms of projective geometry. Int J Bifurc Chaos 21:1795

    Article  MathSciNet  MATH  Google Scholar 

  288. Ott E, Antonsen TM (2008) Low dimensional behavior of large systems of globally coupled oscillators. Chaos 18:037113

    Article  ADS  MathSciNet  MATH  Google Scholar 

  289. Omel’chenko OE, Maistrenko Y, Tass P (2008) Chimera states: the natural link between coherence and incoherence. Phys Rev Lett 100:044105

    Article  ADS  Google Scholar 

  290. Abrams DM, Mirollo RE, Strogatz SH, Wiley DA (2008) Solvable model for chimera states of coupled oscillators. Phys Rev Lett 101:084103

    Article  ADS  Google Scholar 

  291. Laing CR (2009) The dynamics of chimera states in heterogeneous Kuramoto networks. Phys D 238:1569

    Article  MathSciNet  MATH  Google Scholar 

  292. Marvel SA, Mirollo RE, Strogatz SH (2009) Identical phase oscillators with global sinusoidal coupling evolve by möbius group action. Chaos 19:043104

    Article  ADS  MathSciNet  MATH  Google Scholar 

  293. Pikovsky A, Rosenblum M (2015) Dynamics of globally coupled oscillators: progress and perspectives. Chaos 25:097616

    Article  ADS  MathSciNet  MATH  Google Scholar 

  294. Hancock EJ, Gottwald GA (2018) Model reduction for kuramoto models with complex topologies. Phys Rev E 98:012307

    Article  ADS  MathSciNet  Google Scholar 

  295. Smith LD, Gottwald GA (2019) Chaos in networks of coupled oscillators with multimodal natural frequency distributions. Chaos 29:093127

    Article  ADS  MathSciNet  MATH  Google Scholar 

  296. Smith LD, Gottwald GA (2020) Chaos in networks of coupled oscillators with multimodal natural frequency distributions, Chaos 29:093127

    Google Scholar 

  297. Gómez-Gardeñes J, Moreno Y, Arenas A (2007) Paths to synchronization on complex networks. Phys Rev Lett 98:034101

    Article  ADS  Google Scholar 

  298. Dörfler F, Bullo F (2014) Synchronization in complex networks of phase oscillators: a survey. Automatica 50:1539

    Article  MathSciNet  MATH  Google Scholar 

  299. Pazó D (2005) Thermodynamic limit of the first-order phase transition in the kuramoto model. Phys Rev E 72:046211

    Article  ADS  MathSciNet  Google Scholar 

  300. Gómez-Gardeñes J, Gómez S, Arenas A, Moreno Y (2011) Explosive synchronization transitions in scale-free networks. Phys Rev Lett 106:128701

    Article  ADS  Google Scholar 

  301. Boccaletti S, Almendral JA, Guan S, Leyva I, Liu Z, Sendiña-Nadal I, Wang Z, Zou Y (2016) Explosive transitions in complex networks’ structure and dynamics: percolation and synchronization. Phys Rep 660

    Google Scholar 

  302. Ermentrout GB (1991) An adaptive model for synchrony in the firefly pteroptyx malaccae. J Math Biol 29:571

    Article  MathSciNet  MATH  Google Scholar 

  303. Filatrella G, Nielsen AH, Pedersen NF (2008) Analysis of a power grid using a Kuramoto-like model. Eur Phys J B 61:485

    Article  ADS  Google Scholar 

  304. Schmietendorf K, Peinke J, Friedrich R, Kamps O (2014) Self-organized synchronization and voltage stability in networks of synchronous machines. Eur Phys J Spec Top 223:2577

    Article  Google Scholar 

  305. Olmi S (2015) Chimera states in coupled Kuramoto oscillators with inertia. Chaos 25:123125

    Article  ADS  MathSciNet  MATH  Google Scholar 

  306. Taylor D, Ott E, Restrepo JG (2010) Spontaneous synchronization of coupled oscillator systems with frequency adaptation. Phys Rev E 81:046214

    Article  ADS  MathSciNet  Google Scholar 

  307. Yeung MKS, Strogatz SH (1999) Time delay in the kuramoto model of coupled oscillators. Phys Rev Lett 82:648

    Article  ADS  Google Scholar 

  308. Petkoski S, Stefanovska A (2012) Kuramoto model with time-varying parameters. Phys Rev E 86:046212

    Article  ADS  Google Scholar 

  309. Maslennikov OV, Nekorkin VI (2017) Adaptive dynamical networks. Phys Usp 60:694

    Article  ADS  Google Scholar 

  310. Ren Q, Zhao J (2007) Adaptive coupling and enhanced synchronization in coupled phase oscillators. Phys Rev E 76:016207

    Article  ADS  Google Scholar 

  311. Maistrenko Y, Lysyansky B, Hauptmann C, Burylko O, Tass PA (2007) Multistability in the kuramoto model with synaptic plasticity. Phys Rev E 75:066207

    Article  ADS  MathSciNet  Google Scholar 

  312. Masuda N, Kori H (2007) Formation of feedforward networks and frequency synchrony by spike-timing-dependent plasticity. J Comp Neurosci 22:327

    Article  MathSciNet  Google Scholar 

  313. Aoki T, Aoyagi T (2009) Co-evolution of phases and connection strengths in a network of phase oscillators. Phys Rev Lett 102:034101

    Article  ADS  Google Scholar 

  314. Niyogi RK, English LQ (2009) Learning-rate-dependent clustering and self-development in a network of coupled phase oscillators. Phys Rev E 80:066213

    Article  ADS  Google Scholar 

  315. Takahashi YK, Kori H, Masuda N (2009) Self-organization of feed-forward structure and entrainment in excitatory neural networks with spike-timing-dependent plasticity. Phys Rev E 79:051904

    Article  ADS  MathSciNet  Google Scholar 

  316. Li M, Guan S, Lai CH (2010) Spontaneous formation of dynamical groups in an adaptive networked system. New J Phys 12:103032

    Article  Google Scholar 

  317. Aoki T, Aoyagi T (2011) Self-organized network of phase oscillators coupled by activity-dependent interactions. Phys Rev E 84:066109

    Article  ADS  Google Scholar 

  318. Skardal PS, Taylor D, Restrepo JG (2013) Complex macroscopic behavior in systems of phase oscillators with adaptive coupling. Phys D 267:27

    Article  MathSciNet  MATH  Google Scholar 

  319. Chandrasekar VK, Sheeba JH, Subash B, Lakshmanan M, Kurths J (2014) Adaptive coupling induced multi-stable states in complex networks. Phys D 267:36

    Article  MathSciNet  MATH  Google Scholar 

  320. Ren Q, He M, Yu X, Long Q, Zhao J (2014) The adaptive coupling scheme and the heterogeneity in intrinsic frequency and degree distributions of the complex networks. Phys Lett A 378:139

    Article  ADS  MATH  Google Scholar 

  321. Timms L, English LQ (2014) Synchronization in phase-coupled Kuramoto oscillator networks with axonal delay and synaptic plasticity. Phys Rev E 89:032906

    Article  ADS  Google Scholar 

  322. Aoki T (2015) Self-organization of a recurrent network under ongoing synaptic plasticity. Neural Netw 62:11

    Article  MATH  Google Scholar 

  323. Ha SY, Noh SE, Park J (2016) Synchronization of kuramoto oscillators with adaptive couplings. SIAM J Appl Dyn Syst 15:162

    Article  MathSciNet  MATH  Google Scholar 

  324. Kasatkin DV, Nekorkin VI (2016) Dynamics of the phase oscillators with plastic couplings. Radiophys Quantum Electron 58:877

    Article  ADS  Google Scholar 

  325. Nekorkin VI, Kasatkin DV (2016) Dynamics of a network of phase oscillators with plastic couplings. AIP Conf Proc 1738:210010

    Article  Google Scholar 

  326. Asl MM, Valizadeh A, Tass PA (2017) Dendritic and axonal propagation delays determine emergent structures of neuronal networks with plastic synapses. Sci Rep 7:39682

    Article  ADS  Google Scholar 

  327. Kasatkin DV, Yanchuk S, Schöll E, Nekorkin VI (2017) Self-organized emergence of multi-layer structure and chimera states in dynamical networks with adaptive couplings. Phys Rev E 96:062211

    Article  ADS  Google Scholar 

  328. Asl MM, Valizadeh A, Tass PA (2018) Delay-induced multistability and loop formation in neuronal networks with spike-timing-dependent plasticity. Sci Rep 8:12068

    Article  ADS  Google Scholar 

  329. Asl MM, Valizadeh A, Tass PA (2018) Dendritic and axonal propagation delays may shape neuronal networks with plastic synapses. Front Phys 9:1849

    Article  Google Scholar 

  330. Bacic I, Klinshov V, Nekorkin VI, Perc M, Franović I (2018) Inverse stochastic resonance in a system of excitable active rotators with adaptive coupling. EPL 124:40004

    Article  ADS  Google Scholar 

  331. Bacic I, Yanchuk S, Wolfrum M, Franović I (2018) Noise-induced switching in two adaptively coupled excitable systems. Eur Phys J Spec Top 227:1077

    Article  Google Scholar 

  332. Kasatkin DV, Nekorkin VI (2018) The effect of topology on organization of synchronous behavior in dynamical networks with adaptive couplings. Eur Phys J Spec Top 227:1051

    Article  Google Scholar 

  333. Karimian M, Dibenedetto D, Moerel M, Burwick T, Westra RL, De Weerd P, Senden M (2019) Effects of synaptic and myelin plasticity on learning in a network of kuramoto phase oscillators. Chaos 29:083122

    Article  ADS  MathSciNet  MATH  Google Scholar 

  334. Berner R, Schöll E, Yanchuk S (2019) Multiclusters in networks of adaptively coupled phase oscillators. SIAM J Appl Dyn Syst 18:2227

    Article  MathSciNet  Google Scholar 

  335. Berner R, Fialkowski J, Kasatkin DV, Nekorkin VI, Yanchuk S, Schöll E (2019) Hierarchical frequency clusters in adaptive networks of phase oscillators. Chaos 29:103134

    Article  ADS  MathSciNet  MATH  Google Scholar 

  336. Berner R, Vock S, Schöll E, Yanchuk S (2021) Desynchronization transitions in adaptive networks. Phys Rev Lett 126:028301

    Article  ADS  MathSciNet  Google Scholar 

  337. Feketa P, Schaum A, Meurer T (2019) Synchronization and multi-cluster capabilities of oscillatory networks with adaptive coupling. IEEE Trans Autom Control

    Google Scholar 

  338. Franović I, Yanchuk S, Eydam S, Bacic I, Wolfrum M (2020) Dynamics of a stochastic excitable system with slowly adapting feedback. Chaos 30:083109

    Google Scholar 

  339. Vock S, Berner R, Yanchuk S, Schöll E (2021) Effect of diluted connectivities on cluster synchronization of adaptively coupled oscillator networks. arXiv:2101.05601

  340. Gleiser PM, Zanette DH (2006) Synchronization and structure in an adaptive oscillator network. Eur Phys J B 53:233

    Article  ADS  Google Scholar 

  341. Li MH, Guan SG, Lai CH (2011) Formation of modularity in a model of evolving networks. Europhys Lett 95:58004

    Article  ADS  Google Scholar 

  342. Scafuti F, Aoki T, di Bernardo M (2015) Heterogeneity induces emergent functional networks for synchronization. Phys Rev E 91:062913

    Article  ADS  MathSciNet  Google Scholar 

  343. Papadopoulos L, Kim JZ, Kurths J, Bassett DS (2017) Development of structural correlations and synchronization from adaptive rewiring in networks of kuramoto oscillators. Chaos 27:073115

    Article  ADS  MathSciNet  MATH  Google Scholar 

  344. Damicelli F, Hilgetag CC, Hütt MT, Messé A (2019) Topological reinforcement as a principle of modularity emergence in brain networks. Netw Neurosci 3:589

    Article  Google Scholar 

  345. Makarov VV, Koronovskii AA, Maksimenko VA, Hramov AE, Moskalenko OI, Buldú JM, Boccaletti S (2016) Emergence of a multilayer structure in adaptive networks of phase oscillators. Chaos, Solitons Fractals 84:23

    Article  ADS  MATH  Google Scholar 

  346. Kasatkin DV, Nekorkin VI (2018) Synchronization of chimera states in a multiplex system of phase oscillators with adaptive couplings. Chaos 28:093115

    Article  ADS  MATH  Google Scholar 

  347. Kasatkin DV, Klinshov V, Nekorkin VI (2019) Itinerant chimeras in an adaptive network of pulse-coupled oscillators. Phys Rev E 99:022203

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rico Berner .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berner, R. (2021). Introduction. In: Patterns of Synchrony in Complex Networks of Adaptively Coupled Oscillators. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-74938-5_1

Download citation

Publish with us

Policies and ethics