Skip to main content

Paired Measures

  • Chapter
  • First Online:
The 2x2 Matrix

Abstract

This chapter considers many of the standard paired measures of discrimination which can be derived from the basic 2 × 2 contingency table, including sensitivity and specificity, predictive values, and likelihood ratios. These parameters are often used in the evaluation of classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altman DG, Bland JM. Diagnostic tests 2: predictive values. BMJ. 1994;309:102.

    Article  Google Scholar 

  2. Bossuyt PMM. Clinical validity: defining biomarker performance. Scand J Clin Lab Invest. 2010;70(Suppl242):46–52.

    Article  Google Scholar 

  3. Brenner H, Gefeller O. Variation of sensitivity, specificity, likelihood ratios and predictive values with disease prevalence. Stat Med. 1997;16:981–91.

    Article  Google Scholar 

  4. Brown MD, Reeves MJ. Interval likelihood ratios: another advantage for the evidence-based diagnostician. Ann Emerg Med. 2003;42:292–7.

    Article  Google Scholar 

  5. Edwards AWF. The measure of association in a 2 × 2 table. J R Stat Soc Ser A. 1963;126:109–14.

    Article  Google Scholar 

  6. Glas AS, Lijmer JG, Prins MH, Bonsel GJ, Bossuyt PM. The diagnostic odds ratio: a single indicator of test performance. J Clin Epidemiol. 2003;56:1129–35.

    Article  Google Scholar 

  7. Habibzadeh F, Habibzadeh P, Yadollahie M. On determining the most appropriate test cut-off value: the case of tests with continuous results. Biochem Med (Zagreb). 2016;26:297–307.

    Article  Google Scholar 

  8. Heston TF. Standardizing predictive values in diagnostic imaging research. J Magn Reson Imaging. 2011;33:505.

    Article  Google Scholar 

  9. Heston TF. Standardized predictive values. J Magn Reson Imaging. 2014;39:1338.

    Article  Google Scholar 

  10. Hlatky MA, Mark DB, Harrell FE Jr, Lee KL, Califf RM, Pryor DB. Rethinking sensitivity and specificity. Am J Cardiol. 1987;59:1195–8.

    Article  Google Scholar 

  11. Hsieh S, McGrory S, Leslie F, Dawson K, Ahmed S, Butler CR, et al. The Mini-Addenbrooke’s Cognitive Examination: a new assessment tool for dementia. Dement Geriatr Cogn Disord. 2015;39:1–11.

    Article  Google Scholar 

  12. Hunink MGM, Weinstein MC, Wittenberg E, Drummond MF, Pliskin JS, Wong JB, et al. Decision making in health and medicine. Integrating evidence and values. 2nd ed. Cambridge: Cambridge University Press; 2014.

    Book  Google Scholar 

  13. Jaeschke R, Guyatt G, Sackett DL. Users’ guide to the medical literature. III. How to use an article about a diagnostic test. B. What are the results and will they help me in caring for my patients? JAMA. 1994;271:703–7.

    Article  Google Scholar 

  14. Kraemer HC. Evaluating medical tests. Objective and quantitative guidelines. Newbery Park: Sage; 1992.

    Google Scholar 

  15. Larner AJ. MACE for diagnosis of dementia and MCI: examining cut-offs and predictive values. Diagnostics (Basel). 2019;9:E51.

    Article  Google Scholar 

  16. Larner AJ. Applying Kraemer’s Q (positive sign rate): some implications for diagnostic test accuracy study results. Dement Geriatr Cogn Dis Extra. 2019;9:389–96.

    Article  Google Scholar 

  17. Larner AJ. New unitary metrics for dementia test accuracy studies. Prog Neurol Psychiatry. 2019;23(3):21–5.

    Article  Google Scholar 

  18. Larner AJ. Mini-Addenbrooke’s Cognitive Examination (MACE): a useful cognitive screening instrument in older people? Can Geriatr J. 2020;23:199–204.

    Article  Google Scholar 

  19. Larner AJ. The “attended alone” and “attended with” signs in the assessment of cognitive impairment: a revalidation. Postgrad Med. 2020;132:595–600.

    Article  Google Scholar 

  20. Larner AJ. Cognitive screening instruments for dementia: comparing metrics of test limitation. medRxiv. 2020; https://doi.org/10.1101/2020.10.29.20222109v1.

  21. Larner AJ. Manual of screeners for dementia. Pragmatic test accuracy studies. London: Springer; 2020.

    Book  Google Scholar 

  22. Larrabee GJ, Barry DTR. Diagnostic classification statistics and diagnostic validity of malingering assessment. In: Larrabee GJ, editor. Assessment of malingered neuropsychological deficits. Oxford: Oxford University Press; 2007. p. 14–26.

    Google Scholar 

  23. Leeflang MM, Bossuyt PM, Irwig L. Diagnostic test accuracy may vary with prevalence: implications for evidence-based diagnosis. J Clin Epidemiol. 2009;62:5–12.

    Article  Google Scholar 

  24. Leeflang MM, Rutjes AW, Reitsma JB, Hooft L, Bossuyt PM. Variation of a test’s sensitivity and specificity with disease prevalence. CMAJ. 2013;185:E537–44.

    Article  Google Scholar 

  25. Linn S. New patient-oriented diagnostic test characteristics analogous to the likelihood ratios conveyed information on trustworthiness. J Clin Epidemiol. 2005;58:450–7.

    Article  Google Scholar 

  26. Mathuranath PS, Nestor PJ, Berrios GE, Rakowicz W, Hodges JR. A brief cognitive test battery to differentiate Alzheimer’s disease and frontotemporal dementia. Neurology. 2000;55:1613–20.

    Article  Google Scholar 

  27. McGee S. Simplifying likelihood ratios. J Gen Intern Med. 2002;17:647–50.

    Article  Google Scholar 

  28. Mioshi E, Dawson K, Mitchell J, Arnold R, Hodges JR. The Addenbrooke’s Cognitive Examination Revised: a brief cognitive test battery for dementia screening. Int J Geriatr Psychiatry. 2006;21:1078–85.

    Article  Google Scholar 

  29. Mitchell AJ. Sensitivity x PPV is a recognized test called the clinical utility index (CUI+). Eur J Epidemiol. 2011;26:251–2.

    Article  Google Scholar 

  30. Neyman J. Outline of statistical treatment of the problem of diagnosis. Public Health Rep. 1947;62:1449–56.

    Article  Google Scholar 

  31. Ostergaard SD, Dinesen PT, Foldager L. Quantifying the value of markers in screening programmes. Eur J Epidemiol. 2010;25:151–4.

    Article  Google Scholar 

  32. Perera R, Heneghan C. Making sense of diagnostic tests likelihood ratios. Evid Based Med. 2006;11:130–1.

    Article  Google Scholar 

  33. Rosenthal JA. Qualitative descriptors of strength of association and effect size. J Soc Serv Res. 1996;21:37–59.

    Article  Google Scholar 

  34. Schaefer JT. The critical success index as an indicator of warning skill. Weather Forecast. 1990;5:570–5.

    Article  Google Scholar 

  35. Warrens MJ. A Kraemer-type rescaling that transforms the odds ratio into the weighted kappa coefficient. Psychometrika. 2010;75:328–30.

    Article  MathSciNet  Google Scholar 

  36. Yerushalmy J. Statistical problems in assessing methods of medical diagnosis, with special reference to x-ray techniques. Public Health Rep. 1947;62:1432–49.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Larner, A.J. (2021). Paired Measures. In: The 2x2 Matrix. Springer, Cham. https://doi.org/10.1007/978-3-030-74920-0_2

Download citation

Publish with us

Policies and ethics