Skip to main content

Nuclear Shock Waves

  • Chapter
  • First Online:
Intense Shock Waves on Earth and in Space

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

  • 745 Accesses

Abstract

Energy densities and their corresponding extremely high intensities of shock waves which are maximum of those available in terrestrial conditions are reached today in the collision of relativistic heavy ions (Fortov in High energy density physics. FIZMATLIT, Moscow, 2013 [1]; Fortov in Extreme states of matter. High energy density physics, 2nd edn. Springer, Heidelberg, New York, London, 2016 [2]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fortov VE (2013) High energy density physics. FIZMATLIT, Moscow [Fortov V.E. Fizika vysokikh plotnostey energii. — M.: FIZMATLIT, 2013 (in Russian)]

    Google Scholar 

  2. Fortov VE (2016) Extreme states of matter. High energy density physics, 2nd edn. Springer, Heidelberg, New York, London

    Google Scholar 

  3. Fortov VE, Hoffmann D, Sharkov BYu (2008) Intense ion beams for generating extreme states of matter. Phys Usp 178(2):113 [Fortov V.E., Hoffmann D., Sharkov B.Yu. Intensivnyye ionnyye puchki dlya generatsii ekstremal’nykh sostoyaniy veshchestva // UFN. 2008. T. 178, №2. S. 113 (in Russian)]

    Google Scholar 

  4. Okun’ LB (1990) Leptons and quarks, 2nd edn. Nauka, Moscow [Okun’ L.B. Leptony i kvarki. 2 izd. — M.: Nauka, 1990 (in Russian)]

    Google Scholar 

  5. Ginzburg VL (1995) On physics and astrophysics. Quantum Bureau, Moscow [Ginzburg V.L. O fizike i astrofizike. — M.: Byuro Kvantum, 1995 (in Russian)]

    Google Scholar 

  6. Zel’dovich YaB, Raizer YuP (2008) Physics of shock waves and high-temperature hydrodynamic phenomena, 3rd edn., corrected. FIZMATLIT, Moscow [Zel’dovich Ya.B., Raizer Yu.P. Fizika udarnykh i vysokotemperaturnykh gidrodinamicheskikh yavleniy. Izd. 3, ispr. — M.: FIZMATLIT, 2008 (in Russian)]

    Google Scholar 

  7. Novikov ID (2001) “Big Bang” echo (cosmic microwave background observations) (RAS session 28.02.2001). Phys Usp 171(8):859 [Novikov I.D. Otzvuki Bol’shogo vzryva (nablyudeniya reliktovogo izlucheniya) (Sessiya RAN 28.02.2001) // UFN. 2001. T. 171, №8. S. 859 (in Russian)]

    Google Scholar 

  8. Rubakov V (2005) Introduction to cosmology. In: Proceedings of science RTN (2005)003

    Google Scholar 

  9. Karsch F (2006) Lattice QCD at high temperature and the QGP

    Google Scholar 

  10. Rubakov VA (2007) Hierarchies of fundamental constants (to items Nos 16, 17, and 27 from Ginzburg’s list). Phys Usp 177(4):407 [Rubakov V.A. Iyerarkhiya fundamental’nykh konstant (k punktam 16, 17 i 27 iz spiska V. L. Ginzburga) // UFN 2007. T. 177, №4. S. 407 (in Russian)]

    Google Scholar 

  11. Rubakov VA (2001) Large and infinite extra dimensions. Phys Usp 171(9):913 [Rubakov V.A. Bol’shiye i beskonechnyye dopolnitel’nyye izmereniya // UFN. 2001. T. 171, №9. S. 913 (in Russian)]

    Google Scholar 

  12. Mangano ML (2010) QCD and the physics of hadronic collisions. Phys Usp 180(2):113–138 [Mangano M.L. Kvantovaya khromodinamika i fizika adronnykh stolknoveniy // UFN. 2010. V. 180, №2. S. 113–138 (in Russian)]

    Google Scholar 

  13. Dremin IM (2009) Physics at the large hadron collider. Phys Usp 179(6):571–579 [Dremin I.M. Fizika na bol’shom adronnom kollaydere // UFN. 2009. T. 179, №6. S. 571–579 (in Russian)]

    Google Scholar 

  14. Rayorden M, Zeitz U (2006) First microseconds. In the World of Science, No. 8, p 21 [Rayorden M., Zeitz U. Pervyye mikrosekundy // V mire nauki. 2006, №8. S. 21 (in Russian)]

    Google Scholar 

  15. Langanke LA (2007) FAIR chance for nuclear astrophysics. In: Symposium on the physics at FAIR. GSI, Darmstadt

    Google Scholar 

  16. Sharkov BYu (ed) (2005) Nuclear fusion with inertial confinement. FIZMATLIT, Moscow [Yadernyy sintez s inertsionnym uderzhaniyem / Pod red. B.Yu. Sharkova. — M.: FIZMATLIT, 2005 (in Russian)]

    Google Scholar 

  17. Hoffmann DHH, Fortov VE, Lomonosov IV et al (2002) Unique capabilities of an intense heavy ion beam as a tool for equation-of-state studies. Phys Plasmas 9(9):3651–3654

    Article  ADS  Google Scholar 

  18. Adzeni S, Meyer-ter-Vehen J (2004) The physics of inertial fusion. Clarendon Press, Oxford

    Google Scholar 

  19. Lindle I (1998) Inertial confinement fusion. Springer, New York

    Google Scholar 

  20. Baumung K, Bluhm HJ, Goel B et al (1996) Shock-wave physics experiments with high-power proton beams. Laser Part Beams 14(2):181

    Google Scholar 

  21. Mesyats GA (2004) Pulse power and electronics. Nauka, Moscow [Mesyats G.A. Impul’snaya energetika i elektronika. — M.: Nauka, 2004 (in Russian)]

    Google Scholar 

  22. Pieranski P (1983) Colloidal crystals. Contemp Phys 24(1):25–73

    Article  ADS  Google Scholar 

  23. Russel WB, Savill DA, Schowalter WR (1989) Colloidal dispersions. Cambridge University Press, Cambridge

    Google Scholar 

  24. Fortov V, Rudakov L, Ni A (1992) Application of intense relativistic electron beams in high dynamic pressure thermophysics. Sov Therm Phys Rev 371:589

    Google Scholar 

  25. Kanel GI, Razorenov SV, Utkin AV, Fortov VE (1996) Shock wave phenomena in condensed media. Yanus-K, Moscow [Kanel G.I., Razorenov S.V., Utkin A.V., Fortov V.E. Udarno-volnovyye yavleniya v kondensirovannykh sredakh. — M.: Yanus-K, 1996 (in Russian)]

    Google Scholar 

  26. Cuneo ME, Vesey RA, Bennett GR et al (2006) Progress in symmetric ICF capsule implosions and wire-array Z-pinch source physics for double-pinch-driven hohlraums. Plasma Phys Control Fusion 48(2):R1–R35

    Article  Google Scholar 

  27. Quintenz J, Sandia S (2000) Pulsed power team. Nagaoka

    Google Scholar 

  28. Tahir NA, Deutsch C, Fortov VE et al (2005) Studies of strongly coupled plasmas using intense heavy ion beams at the future FAIR facility: the HEDgeHOB collaboration. Contrib Plasma Phys 45(3–4):229–235

    Article  ADS  Google Scholar 

  29. Tahir NA, Deutsch C, Fortov VE et al (2005) Proposal for the study of thermophysical properties of high-energy-density matter using current and future heavy-ion accelerator facilities at GSI Darmstadt. Phys Rev Lett 95(3):035001

    Article  ADS  Google Scholar 

  30. Rosmej ON, Blazevic A, Korostiy S et al (2005) Charge state and stopping dynamics of fast heavy ions in dense matter. Phys Rev A 72(5):052901

    Article  ADS  Google Scholar 

  31. Efremov VP, Pikuz Jr SA, Fayenov AYa et al (2005) Study of the energy release region of a heavy-ion flux in nanomaterials by X-ray spectroscopy of multicharged ions. JETP Lett 81(8):468 [Efremov V.P., Pikuz Jr. S.A., Fayenov A.Ya. i dr. Issledovaniye zony energovydeleniya potoka tyazhelykh ionov v nanomaterialakh metodami rentgenovskoy spektroskopii mnogozaryadnykh ionov // Pis’ma ZHETF. 2005. T. 81, №8. S. 468 (in Russian)]

    Google Scholar 

  32. Mintsev V, Gryaznov V, Kulish M et al (1999) Stopping power of proton beam in a weakly non-ideal xenon plasma. Contrib Plasma Phys 39(1–2):45–48

    Article  ADS  Google Scholar 

  33. Friman B, Höhne C, Knoll J et al (eds) (2010) The CBM physics book, 1st edn. In: Lecture notes in physics, vol 814. Springer

    Google Scholar 

  34. Dremin IM, Leonidov AV (2010) The quark-gluon medium. Phys Usp 180(11):1167–1196 [Dremin I.M., Leonidov A.V. Kvark-glyuonnaya sreda // UFN. 2010. T. 180, №11. S. 1167–1196 (in Russian)]

    Google Scholar 

  35. Gyulassy M. Relativistic heavy ions and QGP at FAIR. https://www-win.gsi.de/FAIR-sti/fair-symposium-2007/Gyulassy_FAIR110807final.pdf

  36. Ginzburg VL (2004) On superconductivity and superfluidity (what I have and have not managed to do), as well as on the “physical minimum” at the beginning of the XXI century. Phys Usp 174(11):1240 [Ginzburg V.L. O sverkhprovodimosti i sverkhtekuchesti (chto mne udalos’, a chto ne udalos’), a takzhe o «fizicheskom minimume» na nachalo XXI veka // UFN. 2004. T. 174, №11. S. 1240 (in Russian)]

    Google Scholar 

  37. Sissakian AN, Sorin AS (2009) The nuclotron-based ion collider facility (NICA) at JINR: new prospects for heavy ion collisions and spin physics. J Phys G Nucl Part Phys 36(6):064069

    Article  ADS  Google Scholar 

  38. Sissakian A, Sorin AS (2009) The QCD phase diagram NICA, JINR communication. JINR, Dubna

    Google Scholar 

  39. Sissakian A et al (2009) The multi-purpose detector—MPD to study heavy ion collisions at NICA. Conceptual design report. JINR, Dubna

    Google Scholar 

  40. Randrup J, Ruuskanen PV (2004) Thermodynamic consistency of the equation of state of strongly interacting matter. Phys Rev C 69:047901

    Google Scholar 

  41. Mrowczynski S, Thoma MH (2007) What do electromagnetic plasmas tell us about the quark-gluon plasma? Annu Rev Nucl Part Sci 57(1):61–94

    Article  ADS  Google Scholar 

  42. Blaschke D et al (2009) Searching for a QCD mixed phase at the nuclotron-based ion collider facility (NICA white paper). https://theor.jinr.ru/twiki/pub/NICA/WebHome/Wh_Paper_dk6.pdf

  43. Okun’ LB (2012) The basics of physics. A very brief guide. FIZMATLIT, Moscow [Okun’ L.B. Azy fiziki. Ochen’ kratkiy putevoditel’. — M.: FIZMATLIT, 2012 (in Russian)]

    Google Scholar 

  44. Hands S (2001) The phase diagram of QCD. J Contemp Phys 42(4):209–225

    Google Scholar 

  45. Shuryak E (2009) Physics of strongly coupled quark-gluon plasma. Prog Part Nucl Phys 62(1):48–101

    Google Scholar 

  46. Troitsky SV (2012) Unsolved problems in particle physics. Phys Usp 182(1):77–103 [Troitsky S.V. Nereshennyye problemy fiziki elementarnykh chastits // UFN. 2012. T. 182, №1. S. 77–103 (in Russian)]

    Google Scholar 

  47. Glendenning N (2000) Compact stars, nuclear physics, particle physics and general relativity. Springer, New York

    Google Scholar 

  48. Shuryak EV (1980) Quantum chromodynamics and the theory of superdense matter. Phys Rep 61(2):71–158

    Article  ADS  MathSciNet  Google Scholar 

  49. Shuryak EV (1978) Quark-gluon plasma and hadronic production of leptons, photons and psions. Phys Lett B 78(1):150–153

    Article  ADS  Google Scholar 

  50. Kalashnikov OK, Klimov VV (1979) Phase transition in the quark-gluon plasma. Phys Lett B 88(3–4):328–330

    Article  ADS  Google Scholar 

  51. Kapusta JI (1979) Quantum chromodynamics at high temperature. Nucl Phys B 88(3–4):461–498

    Article  ADS  Google Scholar 

  52. Fodor Z, Katz SD (2004) Critical point of QCD at finite T and μ, lattice results for physical quark masses. J High Energy Phys 2004(04):050

    Google Scholar 

  53. Cheng M, Christ NH, Datta S et al (2008) QCD equation of state with almost physical quark masses. Phys Rev D 77:014511

    Google Scholar 

  54. Csernai LP, Fai G, Gale C, Osnes E (1992) Nuclear equation of state with momentum-dependent interactions. Phys Rev C 46:736–747

    Google Scholar 

  55. Gelman BA, Shuryak EV, Zahed I (2006) Classical strongly coupled quark-gluon plasma. II. Screening and equation of state. Phys Rev C 74:044909

    Google Scholar 

  56. Gubser SS, Nellore A (2008) Mimicking the QCD equation of state with a dual black hole. Phys Rev D 78:086007

    Google Scholar 

  57. Hamieh S, Letessier J, Rafelski J (2000) Quark-gluon plasma fireball. Phys Rev C 62:064901

    Google Scholar 

  58. Letessier J, Rafelski J (2003) QCD equations of state and the quark-gluon plasma liquid model. Phys Rev C 67:031902

    Google Scholar 

  59. Lévai P, Heinz U (1998) Massive gluons and quarks and the equation of state obtained from SU(3) lattice QCD. Phys Rev C 57:1879–1890

    Google Scholar 

  60. Lampert MA, Molina-Parı́s C (1998) Effective equation of state for a spherically expanding pion plasma. Phys Rev D 57:83–92

    Google Scholar 

  61. Kolomietz VM, Sanzhur AI, Shlomo S, Firin SA (2001) Equation of state and phase transitions in asymmetric nuclear matter. Phys Rev C 64:024315

    Google Scholar 

  62. Stocker H, Hofmann J, Maruhn J, Greiner W (1980) Shock waves in nuclear matter—proof by circumstantial evidence. Prog Part Nucl Phys 4:133–195

    Google Scholar 

  63. Royzen II, Feynberg EN, Chernavskaya OD (2004) Deconfinement of color and subhadron matter: phase state and pole of constituent quarks. Phys Usp 174(5):473 [Royzen I.I., Feynberg E.N., Chernavskaya O.D. Dekonfaynment tsveta i subadronnoye veshchestvo: fazovoye sostoyaniye i Pol’ konstituyentnykh kvarkov // UFN. 2004. T. 174, №5. S. 473 (in Russian)]

    Google Scholar 

  64. Jacak B, Steinberg P (2010) Creating the perfect liquid in heavy-ion collisions. Phys Today 63(5):39–43

    Google Scholar 

  65. Fortov VE (2012) Equation of state of matter. From ideal gas to quark-gluon plasma. FIZMATLIT, Moscow [Fortov V.E. Uravneniye sostoyaniya veshchestva. Ot ideal’nogo gaza do kvark-glyuonnoy plazmy. — M.: FIZMATLIT, 2012 (in Russian)]

    Google Scholar 

  66. Csikor F, Egri G, Fodor Z et al (2004) The QCD equation of state at finite Tμ on the lattice. Prog Theor Phys Supp 153:93–105

    Article  ADS  Google Scholar 

  67. Chernodub MN, Nakamura A, Zakharov VI (2008) Manifestations of magnetic vortices in the equation of state of a Yang-Mills plasma. Phys Rev D 78:074021

    Google Scholar 

  68. Adams J, Adler C, Aggarwal MM et al (2004) Azimuthal anisotropy at the relativistic heavy ion collider: the first and fourth harmonics. Phys Rev Lett 92(6):062301

    Article  ADS  Google Scholar 

  69. Sorensen PR (2003) Kaon and lambda production at intermediate PT: insights into the hadronization of the bulk partonic matter created in Au+Au collisions at RHIC. Ph.D. thesis

    Google Scholar 

  70. Adams J, Adler C, Aggarwal MM et al (2004) Particle-Type Dependence of azimuthal anisotropy and nuclear modification of particle production in Au+Au collisions at sNN = 200 GeV. Phys Rev Lett 92(5):052302

    Article  ADS  Google Scholar 

  71. Adler SS, Afanasiev S, Aidala C et al (2003) Elliptic flow of identified hadrons in Au+Au collisions at sNN = 200 GeV. Phys Rev Lett 91(18):182301

    Article  ADS  Google Scholar 

  72. Alt C, Anticic T, Baatar B et al (2003) Directed and elliptic flow of charged pions and protons in Pb+Pb collisions at 4A and 158A GeV. Phys Rev C 68(3):034903

    Article  ADS  Google Scholar 

  73. Bazavov A, Toussaint D, Bernard C, Laiho J, DeTar C, Levkova L, Oktay MB, Gottlieb S, Heller UM, Hetrick JE, Mackenzie PB, Sugar Van de Water RS (2010) Nonperturbative QCD simulations with 2+1 flavors of improved staggered quarks. Rev Mod Phys 82:1349

    Google Scholar 

  74. Bugayev KA, Gorenstein MI, Rishke D (1990) Phase transition of deconfinement and behavior of pion plurality in nuclear collisions. JETP Lett 52(10):1121 [Bugayev K.A., Gorenstein M.I., Rishke D. Fazovyy perekhod dekonfaynmenta i povedeniye pionnoy mnozhestvennosti v yadernykh soudareniyakh // Pis’ma v ZHETF. 1990. T. 52, №10. S. 1121 (in Russian)]

    Google Scholar 

  75. Gyulassy M, Plumer M (1991) Jet quenching as a probe of dense matter. Nucl Phys A 527:641–644

    Google Scholar 

  76. Gyulassy M, Plumer M, Thoma M, Wang XN (1992) High PT probes of nuclear collisions. Nucl Phys A 538:37–49

    Google Scholar 

  77. Wang X-N, Gyulassy M (1992) Gluon shadowing and jet quenching √ in A+A collisions at s=200 A GeV. Phys Rev Lett 68(10):1480–1483

    Article  ADS  Google Scholar 

  78. Vitev I, Gyulassy M (2002) High-PT tomography of d+Au and Au+Au at SPS, RHIC, and LHC. Phys Rev Lett 89(25):252301

    Article  ADS  Google Scholar 

  79. Shuryak E (2009) Physics of strongly coupled quark-gluon plasma. Prog Part Nucl Phys 62:48

    Google Scholar 

  80. Wilson KG (1974) Confinement of quarks. Phys Rev D 10:2445

    Google Scholar 

  81. Tiwari SK, Singh CP (2013) Particle production in ultrarelativistic heavy-ion collisions: a statistical-thermal model review. Adv High Energy Phys 27 pages. Article ID 805413. https://doi.org/10.1155/2013/805413

  82. Barz HW, Csernai LP, Kampfer B, Lukács B (1985) Stability of detonation fronts leading to quark-gluon plasma. Phys Rev D 32:2903

    Google Scholar 

  83. Gorenstein MI, Zhdanov VI (1987) Shock stability criterion in relativistic hydrodynamics and quark-gluon plasma hadronization. Z Phys C Part Fields 34:79

    Google Scholar 

  84. Bugaev KA, Gorenstein MI (1987) Relativistic shocks in baryonic matter. J Phys G Nucl Phys 13:1231

    Google Scholar 

  85. Bugaev KA, Gorenstein MI, Zhdanov VI (1988) Relativistic shocks in the systems containing domains with anomalous equation of state and quark baryonic matter hadronization. Z Phys C Part Fields 39:365

    Google Scholar 

  86. Bugaev KA, Gorenstein MI, Kämpfer B, Zhdanov VI (1989) Generalized shock adiabatics and relativistic nuclear collisions. Phys Rev D 40:2903

    Google Scholar 

  87. Cleymans J, Gavai RV, Suhonen E (1986) Quarks and gluons at high temperatures and densities. Phys Rep 130(4):217

    Article  ADS  Google Scholar 

  88. Kontorovich VM (1968) Shock wave stability in relativistic hydrodynamics. JETP 34(1):186 [Kontorovich V.M. Ustoychivost’ udarnykh voln v relyativistskoy gidrodinamike // ZHETF. 1968. T. 34, №1. C. 186 (in Russian)]

    Google Scholar 

  89. Russo G (1988) Stability properties of relativistic shock waves: applications. Astrophys J 334:707

    Google Scholar 

  90. Taub AH (1978) Relativistic fluid mechanics. Annu Rev Fluid Mech 10:301

    Google Scholar 

  91. Menikoff R, Plohr BJ (1989) The Riemann problem for fluid flow of real materials. Rev Mod Phys 61:75

    Google Scholar 

  92. Landau LD, Lifshits EM (1988) Theoretical physics, vol VI. Nauka, Moscow, 736 p [Лaндay Л.Д., Лифшиц E.M. Teopeтичecкaя физикa. T. VI. — M.: Hayкa, 1988. — 736 c. / Landau L.D., Lifshits E.M. Teoreticheskaya fizika. T. VI. — M.: Nauka, 1988. — 736 s (in Russian)]

    Google Scholar 

  93. Anisimov SI, Prokhorov AM, Fortov VE (1984) Application of high-power lasers to study matter at ultrahigh pressures. Phys Usp 142(3):395 [Anisimov S.I., Prokhorov A.M., Fortov V.E. Primeneniye moshchnykh lazerov dlya issledovaniya veshchestva pri sverkhvysokikh davleniyakh // UFN. 1984. T. 142, №3. S. 395 (in Russian)]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Fortov .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fortov, V. (2021). Nuclear Shock Waves. In: Intense Shock Waves on Earth and in Space. Shock Wave and High Pressure Phenomena. Springer, Cham. https://doi.org/10.1007/978-3-030-74840-1_9

Download citation

Publish with us

Policies and ethics