Skip to main content

Electromagnetic Shock Waves

  • Chapter
  • First Online:
Intense Shock Waves on Earth and in Space

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

  • 774 Accesses

Abstract

When studying electromagnetic waves, the object of interest is primarily the oscillatory process at various frequencies. However, oscillations do not exhaust the whole variety of electromagnetic processes in a wave. This chapter will focus on electromagnetic shock waves considered as solitary pulses of an electromagnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In another extreme case (strong dispersion and low nonlinearity), nonlinearity has a significant effect on large-scale processes covering many periods of a quasi-harmonic wave. Thus, the shape of the “envelopes” of the amplitude and frequency of the modulated wave in such a medium can experience strong distortions; in particular, Riemann and shock waves of envelopes are possible. In nonlinear optics, such cases of special dispersion are intensively studied when only individual spectral components of the wave efficiently interact.

  2. 2.

    In a general way, the constitutive equations include the equations of mechanics of deformable media and thermodynamics and the complete system of equations describes not only electromagnetic processes. Henceforth, we will consider quasi-electromagnetic waves and spatial dispersion will be taken into account only when it is also associated with electromagnetic processes.

  3. 3.

    In this sense, a lumped-parameter network can be considered as an equivalent scheme of the respective distributed line.

  4. 4.

    Let us note that the influence of the crystalline anisotropy of ferrite as well as exchange and mangetoelastic effects apparently does not lead to substantial differences in the shock wave structure [4].

References

  1. Fortov VE (2013) High energy density physics. FIZMATLIT, Moscow [Fortov V.E. Fizika vysokikh plotnostey energii. — M.: FIZMATLIT, 2013 (in Russian)]

    Google Scholar 

  2. Fortov VE (2016) Extreme states of matter. High energy density physics, 2nd edn. Springer, Heidelberg, New York, London

    Google Scholar 

  3. Zababakhin EI. Unbounded cumulation phenomena. In: Sedov LI (ed) In the collection Mechanics in the USSR for 50 years, vol 2, p 314 [Zababakhin E.I. Yavleniya neogranichennoy kumulyatsii. V sb. «Mekhanika v SSSR za 50 let». T. 2 / Pod. Red. L. I. Sedova. S. 314 (in Russian)]

    Google Scholar 

  4. Gaponov AV, Ostrovsky LA, Freidman GN (1967) Radiophysics X(9–10) [Gaponov A.V., Ostrovsky L.A, Freidman G.N. / Radiofizika. 1967. T. Kh, № 9–10 (in Russian)]

    Google Scholar 

  5. Gaponov-Grekhov AV, Freidman GN (1949) JETP 36:957 [Gaponov-Grekhov A.V., Freidman G.N. / ZHETF. 1949. T. 36. S. 957 (in Russian)]

    Google Scholar 

  6. Rosen J (1965) Phys Rev 139(2A):539–543

    Article  ADS  Google Scholar 

  7. Landau LD, Lifshits EM (1986) Hydrodynamics. Nauka, Moscow [Landau L.D., Lifshits E.M. Gidrodinamika. — M.: Nauka, 1986 (in Russian)]

    Google Scholar 

  8. Zel’dovich YaB, Raizer YuP (2008) Theory of shock waves and high-temperature hydrodynamic phenomena, 3rd edn., corrected. FIZMATLIT, Moscow [Zel’dovich Ya.B., Raizer Yu.P. Teoriya udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavleniy. 3-ye izd., ispr. — M.: FIZMATLIT, 2008 (in Russian)]

    Google Scholar 

  9. Zel’dovich YaB, Raizer YuP (1946) Theory of shock waves and introduction into gas dynamics. Ed. of the USSR Academy of Sciences, Moscow-Leningrad [Zel’dovich, Ya.B., Raizer, Yu.P. Teoriya udarnykh voln i vvedeniye v gazodinamiku. — M.–L.: Izd. AN SSSR, 1946 (in Russian)]

    Google Scholar 

  10. Raizer YuP (2011) Introduction into fluid and gas dynamics and theory of shock waves for physicists. Intellect Publishers, Dolgoprudny [Raizer Yu.P. Vvedeniye v gidrogazodinamiku i teoriyu udarnykh voln dlya fizikov. — Dolgoprudnyy: ID «Intellekt», 2011 (in Russian)]

    Google Scholar 

  11. Landau LD, Lifshits EM (1959) Electrodynamics of continuous media. Fizmatgiz, Moscow [Landau L.D., Lifshits E.M. Elektrodinamika sploshnykh sred. — M.: Fizmatgiz, 1959 (in Russian)]

    Google Scholar 

  12. Kulikovsky AG, Lyubimov GA (1962) Magnetohydrodynamics. Fizmatgiz, Moscow [Kulikovsky A.G., Lyubimov G.A. Magnitnaya gidrodinamika. — M.: Fizmatgiz, 1962 (in Russian)]

    Google Scholar 

  13. Polovin RV (1960) Shock waves in magnetohydrodynamics. Phys Usp 72:33 [Polovin R.V. Udarnyye volny v magnitnoy gidrodinamike / UFN. 1960. T. 72. S. 33 (in Russian)]

    Google Scholar 

  14. Ostrovsky LA (1959) Interaction of weak signals with electromagnetic shock waves. Gazette of Universities. Radiophysics 2:833 [Ostrovsky L.A. O vozdeystvii slabykh signalov s elektromagnitnymi udarnymi volnami / Izvestiya vuzov. Radiofizika. 1959. T. 2. S. 833 (in Russian)]

    Google Scholar 

  15. Yulpatov VK (1959) Graduation thesis. Gorky University [Yulpatov V.K. / Diplomnaya rabota. — Gor’kovskiy universitet, 1959 (in Russian)]

    Google Scholar 

  16. Gaponov A, Ostrovsky L, Freidman G (1960) Shock electromagnetic waves. In: XIII general assembly URSI, London

    Google Scholar 

  17. Gaponov AV, Freidman GN (1960) To the theory of electromagnetic shock waves in nonlinear media. Gazette of Universities. Radiophysics 3:79 [Gaponov A.V., Freidman G.N. K teorii udarnykh elektromagnitnykh voln v nelineynykh sredakh / Izvestiya vuzov. Radiofizika. 1960. T. 3. S. 79 (in Russian)]

    Google Scholar 

  18. Landauer R (1960) Shock waves in nonlinear transmission lines and their effect on parametric amplification. IBM J Res Dev 4:391

    Google Scholar 

  19. Gyorgy TM (1958) Modified rotational model of flux reversal. J Appl Phys 29:1709

    Google Scholar 

  20. Gorodetsky AF, Kravchenko AF (1967) Semiconductor devices. Higher School, Moscow [Gorodetsky A.F., Kravchenko A.F. Poluprovodnikovyye pribory. — M.: Vyssh. shkola, 1967 (in Russian)]

    Google Scholar 

  21. Belyantsev AM, Gaponov AV, Daume EYa, Freidman GI (1964) Experimental study of the propagation of electromagnetic waves of finite amplitude in waveguides filled with ferrite. JETP 47:1699 [Belyantsev A.M., Gaponov A.V., Daume E.Ya., Freidman G.I. Eksperimental’noye issledovaniye rasprostraneniya elektromagnitnykh voln konechno amplitudy v volnovodakh, zapolnennykh ferritom / ZHETF. 1964. T. 47. S. 1699 (in Russian)]

    Google Scholar 

  22. Belyantsev AM, Ostrovsky LA (1962) Propagation of pulses in lines with nonlinear semiconductor capacitances. Gazette of Universities. Radiophysics 5:183 [Belyantsev A.M., Ostrovsky L.A. Rasprostraneniye impul’sov v liniyakh s nelineynymi poluprovodnikovymi yemkostyami / Izvestiya vuzov. Radiofizika. 1962. T. 5. S. 183 (in Russian)]

    Google Scholar 

  23. Katayev IG (1963) Electromagnetic shock waves. Soviet Radio, Moscow [Katayev I.G. Udarnyye elektromagnitnyye volny. — M.: Sov. radio, 1963 (in Russian)]

    Google Scholar 

  24. Ostrovsky LA (1961) Electromagnetic waves in heterogeneous nonlinear medium with low losses. Gazette of Universities. Radiophysics 4:955 [Ostrovsky L.A. Elektromagnitnyye volny v neodnorodnoy nelineynoy srede s malymi poteryami / Izvestiya vuzov. Radiofizika. 1961. T. 4. S. 955 (in Russian)]

    Google Scholar 

  25. Ostrovsky LA (1963) Formation and development of electromagnetic shock waves in transmission lines with non-saturated ferrite. Tech Phys J 33:1080 [Ostrovsky L.A. Obrazovaniye i razvitiye udarnykh elektromagnitnykh voln v liniyakh peredachi s nenasyshchennym ferritom / ZHTF. 1963. T. 33. S. 1080 (in Russian)]

    Google Scholar 

  26. Gutzwiller MC, Miranker WL (1963) Nonlinear wave propagation in a transmission line loaded with thin permalloy films. IBM J Res Dev 7:278 [Экcпp. инфopм. вычиcлит. тexн. 1964. № 14]

    Google Scholar 

  27. Ostrovsky LA (1963) Reflection of electromagnetic shock waves from the short-circuited end of a transmission line with ferrite. Gazette of Universities. Radiophysics 6:413 [Ostrovsky L.A. Otrazheniye udarnykh elektromagnitnykh voln ot korotkozamknutogo kontsa linii peredachi s ferritom. Izvestiya vuzov. Radiofizika. 1963. T. 6. S. 413 (in Russian)]

    Google Scholar 

  28. Whitham GB (1965) Nonlinear dispersive waves. Proc R Soc Ser A 283:238

    Google Scholar 

  29. Gaponov AV, Ostrovsky LA, Rabinovich MI (1965) Electromagnetic waves in non-linear transmission lines with active parameters. In: URSI symposium, Delft; Electromagnetic wave theory, Pergamon Press, 1967

    Google Scholar 

  30. Ostrovsky LA (in print) Electromagnetic shock waves in nonlinear active lines. Gazette of Universities. Radiophysics [Ostrovsky L.A. Udarnyye elektromagnitnyye volny v nelineynykh aktivnykh liniyakh // Izvestiya vuzov. Radiofizika (v pechati) (in Russian)]

    Google Scholar 

  31. Bogatyrev YuK, Ostrovsky LA, Papko VV (in print) Studies of electromagnetic shock waves in nonlinear active lines. Gazette of Universities. Radiophysics [Bogatyrev Yu.K., Ostrovsky L.A., Papko V.V. Issledovaniya udarnykh elektromagnitnykh voln v nelineynykh aktivnykh liniyakh // Izvestiya vuzov. Radiofizika (v pechati) (in Russian)]

    Google Scholar 

  32. Hatfield WB, Auld BA (1963) Electromagnetic shock waves in gyromagnetic media. J Appl Phys 34:2941

    Google Scholar 

  33. Ostrovsky LA (1965) Rotational explosions in the electrodynamics of nonlinear media. Gazette of Universities. Radiophysics 8:738 [Ostrovsky L.A. Vrashchatel’nyye vzryvy v elektrodinamike nelineynykh sred / Izvestiya vuzov. Radiofizika. 1965. T. 8. S. 738 (in Russian)]

    Google Scholar 

  34. Belayntsev AM, Bogatyrev YuK, Solovyeva LI (1963) Stationary electromagnetic shock waves in transmission lines with unsaturated ferrite. Gazette of Universities. Radiophysics 6:561 [Belayntsev A.M., Bogatyrev Yu.K., Solovyeva L.I. Statsionarnyye elektromagnitnyye udarnyye volny v liniyakh peredachi s nenasyshchennym ferritom / Izvestiya vuzov. Radiofizika. 1963. T. 6. S. 561 (in Russian)]

    Google Scholar 

  35. Belyantsev AM, Kozyrev YuK (2002) Tech Phys J 72(11):133–136 [Belyantsev A.M., Kozyrev Yu.K. / ZHTF. 2002. T. 72, vyp. 11. S. 133–136 (in Russian)]

    Google Scholar 

  36. Seddon N, Bearpark T. Science 302:1489–1537

    Google Scholar 

  37. Belyantsev AM, Kozyrev AB (2001) Tech Phys J 71(7):79–82 [Belyantsev A.M., Kozyrev A.B. ZHTF. 2001. T. 71, vyp. 7. S. 79–82 (in Russian)]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Fortov .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fortov, V. (2021). Electromagnetic Shock Waves. In: Intense Shock Waves on Earth and in Space. Shock Wave and High Pressure Phenomena. Springer, Cham. https://doi.org/10.1007/978-3-030-74840-1_8

Download citation

Publish with us

Policies and ethics