Skip to main content

Shock Waves in Condensed-Matter Physics

  • Chapter
  • First Online:
Intense Shock Waves on Earth and in Space

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

  • 762 Accesses

Abstract

Intense shock waves have become nowadays a single tool for studying the physical properties of matters at extremely high pressures of megabar–gigabar range (Altshuler in Adv Phys Sci 85:197, 1965 [1]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altshuler LV (1965) Adv Phys Sci 85:197 [Altshuler L.V. // UFN. 1965. T. 85. S. 197 (in Russian)]

    Google Scholar 

  2. Altshuler LV, Trunin RF, Urlin VD, Fortov VE, Funtikov AI (1999) Adv Phys Sci 169:323 [Altshuler L.V., Trunin R.F., Urlin V.D., Fortov V.E., Funtikov A.I. // UFN. 1999. T. 169. S. 323 (in Russian)]

    Google Scholar 

  3. Fortov VE et al (eds) (2000) Shock waves and extreme states of matter. Nauka, Moscow [Udarnyye volny i ekstremal’nyye sostoyaniya veshchestva / Pod red. V. E. Fortova i dr. - M.: Nauka, 2000 (in Russian)]

    Google Scholar 

  4. Fortov VE, Lomonosov IV (1997) Pure Appl Chem 69:893

    Google Scholar 

  5. Kanel GI, Razorenov SV, Utkin AV, Fortov VE (1996) Shock wave phenomena in condensed media. Yanus-K, Moscow [Kanel G.I., Razorenov S.V., Utkin A.V., Fortov V.E. Udarno-volnovyye yavleniya v kondensirovannykh sredakh. - M.: Yanus-K, 1996 (in Russian)]

    Google Scholar 

  6. Antoun T, Seaman L, Curran DR, Kanel GI, Razorenov SV, Utkin AV (2003) Spall fracture. Springer, New York

    Google Scholar 

  7. Kanel GI, Razorenov SV, Fortov VE (2004) Shock-wave phenomena and the properties of condensed matter. Springer, New York

    Google Scholar 

  8. Razorenov SV, Savinykh AS, Kanel GI, Skakun SN (2004) In: Furnish MD, Gupta YM, Forbes JW (eds) Shock compression of condensed matter-2003. AIP conference proceedings, vol 706. American Institute of Physics, Melville, New York, p 491

    Google Scholar 

  9. Kanel GI, Razorenov SV, Fortov VE (2005) Successes Mech 3(3):3 [Kanel G.I., Razorenov S.V., Fortov V.E. // Usp. mekhaniki. 2005. T. 3, №3. S. 3 (in Russian)]

    Google Scholar 

  10. Zel’dovich YB, Raizer YP (1966) Physics of shock waves and high-temperature hydrodynamic phenomena. Nauka, Moscow [Zel’dovich Ya.B., Raizer Yu.P. Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavleniy. - M.: Nauka, 1966 (in Russian)]

    Google Scholar 

  11. Fortov VE (2012) Equation of state of matter. From ideal gas to quark-gluon plasma. FIZMATLIT, Moscow [Fortov V.E. Uravneniye sostoyaniya veshchestva. Ot ideal’nogo gaza do kvark-glyuonnoy plazmy. - M.: FIZMATLIT, 2012 (in Russian)]

    Google Scholar 

  12. Zhernokletov MV (ed) (2003) Methods for studying material properties under intense dynamic loads. Russian Federal Nuclear Centre, All-Russian Research Institute for Experimental Physics, Sarov [Metody issledovaniya svoystv materialov pri intensivnykh dinamicheskikh nagruzkakh / Pod red. M. V. Zhernokletova. - Sarov: RFYATS–VNIIEF, 2003 (in Russian)]

    Google Scholar 

  13. McMahon MI, Nelmes R (2006) J Chem Soc Rev 35:943

    Google Scholar 

  14. Baumung K, Bluhm HJ, Goel B, Hoppe P, Karow HU, Rush D, Fortov VE, Kanel GI, Razorenov SV, Utkin AV, Vorobjev OY (1996) Laser Part Beams 14(2):181

    Google Scholar 

  15. Luo SN, Swift DC, Tierney IV TE, Paisley DL, Kyrala GA, Johnson RP, Hauer AA, Tschauner O, Asimov PD (2004) High Press Res 24:409

    Google Scholar 

  16. Barker LM, Hollenbach RE (1974) J Appl Phys 45:4872

    Google Scholar 

  17. Bloomquist DD, Sheffield SA (1983) J Appl Phys 54:1717

    Google Scholar 

  18. Kanel GI, Razorenov SV, Bogatch A, Utkin AV, Fortov VE, Grady DE (1996) J Appl Phys 79:8310

    Google Scholar 

  19. Ananyin AV, Dremin AN, Kanel GI (1981) Phys Combust Explosion 17(3):93 [Ananyin A.V., Dremin A.N., Kanel G.I. // Fiz. goreniya i vzryva. 1981. T. 17, №3. S. 93 (in Russian)]

    Google Scholar 

  20. Kanel GI (2001) J Appl Mech Tech Phys 42(2):194 [Kanel G.I. // PMTF. 2001. T. 42, №2. S. 194 (in Russian)]

    Google Scholar 

  21. Kumar A, Kumble RG (1969) J Appl Phys 40:3475

    Google Scholar 

  22. Sakino K (2000) J Phys IV (France) 10(9):57

    Google Scholar 

  23. Kanel GI, Razorenov SV (2001) J Phys Solid Body 43:839 [Kanel G.I., Razorenov S.V. // FTT. 2001. T. 43. S. 839 (in Russian)]

    Google Scholar 

  24. Kanel GI, Razorenov SV, Baumung K, Singer JJ (2001) Appl Phys 90:136

    Google Scholar 

  25. Berner R, Kronmuller G (1969) Plastic deformation of single crystals. World, Moscow [Berner R., Kronmuller G. Plasticheskaya deformatsiya monokristallov. - M.: Mir, 1969 (in Russian)]

    Google Scholar 

  26. Suzuki T, Yosinaga H, Takeuti S (1989) Dynamics of dislocations and plasticity. World, Moscow [Suzuki T., Yosinaga H., Takeuti S. Dinamika dislokatsiy i plastichnost’. - M.: Mir, 1989 (in Russian)]

    Google Scholar 

  27. Razorenov SV, Kanel GI, Fortov VE (2003) J Phys Metals Mater Sci 95(1):91 [Razorenov S.V., Kanel G.I., Fortov V.E. // FMM. 2003. T. 95, №1. S. 91 (in Russian)]

    Google Scholar 

  28. Kanel GI, Razorenov SV, Zaretsky EB, Herrmann B, Mayer L (2003) J Phys Solid Body 45:625 [Kanel G.I., Razorenov S.V., Zaretsky E.B., Herrmann B., Mayer L. // FTT. 2003. T. 45. S. 625 (in Russian)]

    Google Scholar 

  29. Moriarty JA, Vitek V, Bulatov VV, Yip S (2002) J Comput Aided Mater Design 9(2):99

    Google Scholar 

  30. Chang J, Cai W, Bulatov VV, Yip S (2001) Mater Sci Eng A 309:310160

    Google Scholar 

  31. Mordehai D, Ashkenazy Y, Kelson I, Makov G (2003) Phys Rev B 67:024112

    Google Scholar 

  32. Cheremskoy PG, Slezov VV, Betekhtin VI (1990) Pores in solid body. Energoatomizdat, Moscow [P.G., Slezov V.V., Betekhtin V.I. Pory v tverdom tele. - M.: Energoatomizdat, 1990 (in Russian)]

    Google Scholar 

  33. Hatano T (2004) Phys Rev Lett 93:085501

    Google Scholar 

  34. Krüger L, Meyer LW, Razorenov SV, Kanel GI (2003) Int J Impact Eng 28:877

    Google Scholar 

  35. Zaretsky E, Herrmann B, Shvarts D (2006) In: Furnish MD et al (eds) Shock compression of condensed matter-2005. AIP conference proceedings, vol 845. American Institute of Physics, Melville, New York, p 292

    Google Scholar 

  36. Golkov R, Kleiman D, Zaretsky E (2004) Shock compression of condensed matter-2003, vol 706. American Institute of Physics, Melville, New York, p 735

    Google Scholar 

  37. Zaretsky EB, Kanel GI, Razorenov SV, Baumung K (2005) Int J Impact Eng 31(1):41

    Google Scholar 

  38. Kanel GI, Razorenov SV, Utkin AV, Fortov VE, Baumung K, Karow HU, Rush D, Licht V (1993) J Appl Phys 74:7162

    Google Scholar 

  39. Moshe E, Eliezer S, Dekel E, Ludmirsky A, Henis Z, Werdiger M, Goldberg IB, Eliaz N, Eliezer D (1998) J Appl Phys 83:4004

    Google Scholar 

  40. Eliezer S, Moshe E, Eliezer D (2002) Laser Part Beams 20:87

    Google Scholar 

  41. Skripov VP (1972) Metastable fluid. Nauka, Moscow [Cкpипoв B. П. Meтacтaбильнaя жидкocть. - M.: Hayкa, 1972]

    Google Scholar 

  42. Pickard WF (1982) Prog Biophys Mol Biol 37:181

    Google Scholar 

  43. Bridgman PW (1949) The physics of high pressure. G. Bell, London

    Google Scholar 

  44. Zel’dovich YB (1942) J Exp Theor Phys 12:525 [Zel’dovich Ya.B. // ZHETF. 1942. T. 12. S. 525 (in Russian)]

    Google Scholar 

  45. Frenkel YI (1975) Kinetic theory of fluids. Nauka, Leningrad [Frenkel Ya.I. Kineticheskaya teoriya zhidkostey. - L.: Nauka, 1975 (in Russian)]

    Google Scholar 

  46. Balibar S, Caupin F (2003) J Phys Condens Matter 15:S. 75

    Google Scholar 

  47. Baydakov VG, Protsenko SP (2004) Rep Russ Acad Sci 394:752 [Baydakov V.G., Protsenko S.P. // RAN. 2004. T. 394. S. 752 (in Russian)]

    Google Scholar 

  48. Herbert E, Balibar S, Caupin F (2006) Phys Rev E 74:041603

    Google Scholar 

  49. Razorenov SV, Kanel GI, Fortov VE (1990) Proc USSR Acad Sci 315:609 [Razorenov S.V., Kanel G.I., Fortov V.E. // DAN SSSR. 1990. T. 315. S. 609 (in Russian)]

    Google Scholar 

  50. Tonks DL, Alexander DJ, Sheffield SA, Robbins DL, Zurek AК, Thissell WR (2000) J Phys IV (France) 10:Pr9-787

    Google Scholar 

  51. Novokhatskaya NI, Serebryakov AV, Chashechkin ID (1982) Phys Metals 4(6):46 [Novokhatskaya N.I., Serebryakov A.V., Chashechkin I.D. // Metallofizika. 1982. T. 4, №6. S. 46 (in Russian)]

    Google Scholar 

  52. Paisley DL, Warnes RH, Kopp RA (1992) In: Schmidt SC et al (eds) Shock compression of condensed matter-1991. North-Holland, Amsterdam, p 825

    Google Scholar 

  53. McQueen RG, Marsh SP (1962) J Appl Phys 33:654

    Google Scholar 

  54. Razorenov SV, Kanel GI, Fortov VE (2004) Lett J Exp Theor Phys 80:395 [Razorenov S.V., Kanel G.I., Fortov V.E. // Pis’ma v ZHETF. 2004. T. 80. S. 395 (in Russian)]

    Google Scholar 

  55. Parkhomenko IP, Utkin AV (1990) In: Fortov VE, Kuzmenkov EA (eds) In the collection studies of properties of matter in extreme conditions. Institute of High Temperatures of the Academy of Sciences, Moscow, p 126 [Parkhomenko I.P., Utkin A.V. // V sb. Issledovaniye svoystv veshchestva v ekstremal'nykh usloviyakh / Pod red. V. E. Fortova, E.A. Kuz’menkova. - M.: IVTAN, 1990. S. 126 (in Russian)]

    Google Scholar 

  56. Bogach AA, Utkin AV (2000) J Appl Mech Tech Phys 41(4):198 [Bogach A.A., Utkin A.V. // PMTF. 2000. T. 41, №4. S. 198 (in Russian)]

    Google Scholar 

  57. Zheng Q, Durben DJ, Wolf GH, Angell CA (1991) Science 254:829

    Google Scholar 

  58. Lynden-Bell RM (1995) J Phys Comdens Matter 7:4603

    Google Scholar 

  59. Belak JJ (1998) Comput Aided Mater Design 5193

    Google Scholar 

  60. Rudd RE, Belak JF (2002) Comput Mater Sci 24:148

    Google Scholar 

  61. Marian J, Knap J, Ortiz M (2004) Phys Rev Lett 93:165503

    Google Scholar 

  62. Kuksin AY, Morozov IV, Norman GE, Stegailov VV, Valuev IA (2008) Mol Simul 31:1005

    Google Scholar 

  63. Seppälä ET, Belak J, Rudd RE (2004) Phys Rev B 69:134101

    Google Scholar 

  64. Kuksin AY, Yanilkin AV (2007) Rep Russ Acad Sci 413(5) [Kuksin A.Yu., Yanilkin A.V. // Dokl. RAN. 2007. T. 413, №5 (in Russian)]

    Google Scholar 

  65. Regel VR, Slutsker AI, Tolmashevskiy EE (1972) Adv Phys Sci 106(2):193 [Regel V.R., Slutsker A.I., Tolmashevskiy E.E. // UFN. 1972. T. 106, №2. S. 193 (in Russian)]

    Google Scholar 

  66. Morozov N, Petrov Y (2000) Dynamics of fracture. Springer, Berlin

    Google Scholar 

  67. Sin’ko GV, Smirnov NA (2002) Lett J Exp Theor Phys 75:217 [Sin’ko G.V., Smirnov N.A. // Pis'ma v ZHETF. 2002. T. 75. S. 217 (in Russian)]

    Google Scholar 

  68. Clatterbuck DM, Chrzan DC, Morris JW (2003) Scripta Mater 49:1007

    Google Scholar 

  69. Bezruchko GS, Kanel GI, Razorenov SV (2004) J Thermal Phys High Temp 42(2):262 [Bezruchko G.S., Kanel G.I., Razorenov S.V. // TVT. 2004. T. 42, №2. S. 262 (in Russian)]

    Google Scholar 

  70. Johnson PC, Stein BA, Davis RS (1962) J Appl Phys 33:557

    Google Scholar 

  71. Tolkov EY (1988) Phase transformations of compounds at high pressure. In: Ponyatovsky EG (ed) Reference book. Metallurgy, Moscow [Tolkov E.Yu. Fazovyye prevrashcheniya soyedineniy pri vysokom davlenii. Spravochnik / Pod red. E. G. Ponyatovskogo. - M.: Metallurgiya, 1988 (in Russian)]

    Google Scholar 

  72. Jensen BJ, Rigg PA, Knudson MD, Hixson RS, Gray III GT, Sencer BH, Cherne FJ (2006) In: Furnish MD et al (eds) Shock compression of condensed matter-2005. AIP conference proceedings, vol 845. American Institute of Physics, Melville, New York, p 232

    Google Scholar 

  73. Duvall GE, Graham RA (1977) Rev Mod Phys 49:523

    Google Scholar 

  74. Gust WH (1980) Phys Rev B 22:4744

    Google Scholar 

  75. Erskine DJ, Nellis WJ (1992) J Appl Phys 714882

    Google Scholar 

  76. Gogulya MF, Batukhtin DG, Voskoboynikov IM (1987) Lett J Tech Phys 13:786 [Gogulya M.F., Batukhtin D.G., Voskoboynikov I.M. // Pis’ma v ZHTF. 1987. T. 13. S. 786 (in Russian)]

    Google Scholar 

  77. Kanel GI, Razorenov SV, Zaretsky EB, Herrmann B, Mayer L (2003) J Phys Solid Body 45:625 [Kanel G.I., Razorenov S.V., Zaretsky E.B., Herrmann B., Mayer L. FTT. 2003. T. 45. S. 625 (in Russian)]

    Google Scholar 

  78. Bezruchko GS, Razorenov SV, Kanel GI, Fortov VE (2006) In: Furnish MD et al (eds) Shock compression of condensed matter-2005. AIP conference proceedings, vol 845. American Institute of Physics, Melville, New York, p 192

    Google Scholar 

  79. Roundy D, Cohen ML (2001) Phys Rev B 64:212103

    Google Scholar 

  80. Wilson M, McMillan PF (2003) Phys Rev Lett 90:135703

    Google Scholar 

  81. Sin’ko GV, Smirnov NA (2004) Lett J Exp Theor Phys 79:665 [Sin’ko G.V., Smirnov N.A. // Pis’ma v ZHETF. 2004. T. 79. S. 665 (in Russian)]

    Google Scholar 

  82. Asay JR, Hayes DB (1975) J Appl Phys 46:4789

    Google Scholar 

  83. Kanel GI (2000) J Therm Phys High Temp 38:512 [Kanel G.I. // TVT. 2000. T. 38. S. 512 (in Russian)]

    Google Scholar 

  84. Bogach AA, Kanel GI, Razorenov SV, Utkin AV, Protasova SG, Sursayeva VG (1998) Phys Solid Bodies 40:1849 [Bogach A.A., Kanel G.I., Razorenov S.V., Utkin A.V., Protasova S.G., Sursayeva V.G. // FTT. 1998. T. 40. S. 1849 (in Russian)]

    Google Scholar 

  85. Dash JG (1999) Rev Mod Phys 71:1737

    Google Scholar 

  86. Besold G, Mouritsen OG (1994) Phys Rev B 50:6573

    Google Scholar 

  87. Fecht HJ, Johnson WL (1988) Nature 334:50

    Google Scholar 

  88. Tallon JL (1989) Nature 342:658

    Google Scholar 

  89. Lu K, Li Y (1998) Phys Rev Lett 80:4474

    Google Scholar 

  90. Luo S-N, Ahrens TJ, Gagin T, Strachan A, Goddard III WA, Swift D (2003) Phys Rev B 68:134206

    Google Scholar 

  91. Daeges J, Gleiter H, Perepezko JH (1986) Phys Lett A 119:79

    Google Scholar 

  92. Williamson S, Mourou O, Li JCM (1984) Phys Rev Lett 52:2364

    Google Scholar 

  93. Herrnan JW, Elsayed-Ali HE (1992) Phys Rev Lett 69:1228

    Google Scholar 

  94. Rethfeld B, Sokolowski-Tinten К, von der Linde D, Anisimov SI (2002) Phys Rev B 65:092103

    Google Scholar 

  95. Ivanov DS, Zhigilei LV (2003) Phys Rev 868064114

    Google Scholar 

  96. Skripov VP, Fayzullin MZ (2003) Phase transformations crystal-fluid-vapor and thermodynamic similarity. FIZMATLIT, Moscow [Skripov V.P., Fayzullin M.Z. Fazovyye perekhody kristall–zhidkost’–par i termodinamicheskoye podobiye. - M.: FIZMATLIT, 2003 (in Russian)]

    Google Scholar 

  97. Iosilevskiy IL, Chigvintsev AY (2003) Electron J Res Russ 3:20. https://zhurnal.ape.relarn.ru/articles/2003/003.pdf [Iosilevskiy I.L., Chigvintsev A.Yu. // Elektronnyy zhurn. «Issledovano v Rossii» 2003. T. 3. S. 20; https://zhurnal.ape.relarn.ru/articles/2003/003.pdf (in Russian)]

  98. Kuksin AY, Norman GE, Stegaylov VV (2007) J Therm Phys High Temp 45 [Kuksin A.Yu., Norman G.E., Stegaylov V.V. // TVT. 2007. T. 45 (in Russian)]

    Google Scholar 

  99. Kranz RL (1983) Tectonophysics 100:449

    Google Scholar 

  100. Wang EZ, Shrive NG (1995) Eng Fract Mech 52:1107

    Google Scholar 

  101. Griffith AA (1925) The theory of rupture. In: Biezeno CB, Burgers JM (eds) Proceedings of the 1st international congress for applied mechanics, Delft, The Netherlands, 22–26 Apr 1924, p 55

    Google Scholar 

  102. Brace WF, Bombolakis EG (1963) J Geophys Res 68:3709

    Google Scholar 

  103. Horii H, Nemat-Nasser S (1985) J Geophys Res 90(B4):3105

    Google Scholar 

  104. Grady DE (1998) Mech Maler 29:181

    Google Scholar 

  105. Kanel GI, Bless SJ (2002) In: McCauley JW et al (eds) Ceramic armor materials by design. Ceramic transactions, vol 134. American Ceramic Society, Westerville, Ohio, p 197

    Google Scholar 

  106. Razorenov SV, Kanel GI, Yalovet TN (1993) Chem Phys 12(2):175 [Razorenov S.V., Kanel G.I., Yalovet T.N. // Khim. fiz. 1993. T. 12, №2. S. 175 (in Russian)]

    Google Scholar 

  107. Kanel GI, Razorenov SV, Utkin AV, Baumung К, Karow HU, Licht V (1994) In: Schmidt SC et al (eds) High-pressure science and technology 1993. AIP conference proceedings, vol 309. American Institute of Physics, New York, p 1043

    Google Scholar 

  108. Wang Y, Mikkola DE (1992) In: Meyers MA, Murr LE, Staudhammer KP (eds) Shock-wave and high-strain-rate phenomena in materials. M. Dekker, New York, p 1031

    Google Scholar 

  109. Grigoryan SS (1977) Gaz USSR Acad Sci Mech Solids (1):173 [Grigoryan S.S. // Izv. AN SSSR Mekh. tverdogo tela. 1977. №1. S. 173 (in Russian)]

    Google Scholar 

  110. Slettyan LI (1977) Gaz USSR Acad Sci Mech Solids (1):181 [Slettyan L.I. // Izv. AN SSSR Mekh. tverdogo tela. 1977. №1. S. 181 (in Russian)]

    Google Scholar 

  111. Kanel GI, Razorenov SV, Fortov VE, Abazekhov MM (1988) In collection of IV all-union meeting in detonation, vol 2. United Institute of Chemical Physics, USSR Academy of Sciences, Chernogolovka, p 104 [Kanel G.I., Razorenov S.V., Fortov V.E., Abazekhov M.M. // V sb. IV Vsesoyuz. soveshchaniye po detonatsii. T. 2. - Chernogolovka: OIKHF AN SSSR, 1988. S. 104 (in Russian)]

    Google Scholar 

  112. Razorenov SV, Kanel GI, Fortov VE, Abasehov MM (1991) High Press Res 6:225

    Google Scholar 

  113. Kanel GI, Rasorenov SV, Fortov VE (1992) In: Schmidt SC et al (eds) Shock compression of condensed matter 1991. North-Holland, Amsterdam, p 451

    Google Scholar 

  114. Kanel GI, Razorenov SV, Utkin AV, Hongliang H, Fuqian J, Xiaogang J (1998) High Press Res 16:27

    Google Scholar 

  115. Kanel GI, Bogatch AA, Razorenov SV, Zhen C (2002) J Appl Phys 92:5045

    Google Scholar 

  116. Bourne NK, Rosenberg Z, Millett JCF (2004) In: Furnish MD, Gupta YM, Forbes JW (eds) Shock compression of condensed matter 2003. AIP conference proceedings, vol 706. American Institute of Physics, Melville, New York, p 723

    Google Scholar 

  117. Bourne N, Millett J, Pickup I (1997) J Appl Phys 81:6019

    Google Scholar 

  118. Field JE, Tsembelis K, Brar NS, Proud WO, Dandekar DP, Rosenberg Z (2003) In: Furnish MD, Gupta YM, Forbes JW (eds) Shock compression of condensed matter-2003. AIP conference proceedings, vol 706. American Institute of Physics, Melville, New York, p 1151

    Google Scholar 

  119. Paris VE, Zaretsky EB, Kanel GI, Savinykh AS (2004) In: Furnish MD, Gupta YM, Forbes JW (eds) Shock compression of condensed matter-2003. AIP conference proceedings, vol 706. American Institute of Physics, Melville, New York, p 747

    Google Scholar 

  120. Heard HC, Cline CF (1889) J Mater Sci 15:1889

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Fortov .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fortov, V. (2021). Shock Waves in Condensed-Matter Physics. In: Intense Shock Waves on Earth and in Space. Shock Wave and High Pressure Phenomena. Springer, Cham. https://doi.org/10.1007/978-3-030-74840-1_4

Download citation

Publish with us

Policies and ethics