Skip to main content

Shock Waves in High-Pressure Physics

  • Chapter
  • First Online:
Intense Shock Waves on Earth and in Space

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

  • 772 Accesses

Abstract

The most important and quite efficient field of application of modern shock wave physics in science is high energy density physics [1] where powerful shock waves simultaneously act as a means for both generation and diagnostics of extreme state of matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zel’dovich YB, Raizer YP (2008) Physics of shock waves and high-temperature hydrodynamic phenomena, 3–6 edn. FIZMATLIT, Moscow [Zel’dovich Ya. B., Raizer Yu. P. Fizika udarnykh i vysokotemperaturnykh gidrodinamicheskikh yavleniy. Izd. 3–6, ispr. — M.: FIZMATLIT, 2008 (in Russian)]

    Google Scholar 

  2. Fortov VE (2013) High energy density physics. FIZMATLIT, Moscow [Fortov V. E. Fizika vysokikh plotnostey energii. — M.: FIZMATLIT, 2013 (in Russian)]

    Google Scholar 

  3. Fortov VE (2016) Extreme states of matter. High energy density physics. 2nd edn. Springer, Heidelberg, New York, London

    Google Scholar 

  4. Fortov VE (2012) Equation of state of matter. From ideal gas to Quark-Gluon Plasma. FIZMATLIT, Moscow [Fortov V. E. Uravneniye sostoyaniya veshchestva. Ot ideal'nogo gaza do kvark- glyuonnoy plazmy. — M.: FIZMATLIT, 2012 (in Russian)]

    Google Scholar 

  5. Fortov VE (2016) Thermodynamics and equations of states for matter. From ideal gas to Quark-Gluon Plasma. World, Scientific, New York, London, Tokyo

    Google Scholar 

  6. Al’tshuler LV (1965) Progress in physical sciences. 85(2):469 [Al’tshuler L. V. Uspekhi fizicheskikh nauk. 1965. T.85, vyp. 2. S. 469 (in Russian)]

    Google Scholar 

  7. Kruer WL (1988) The physics of laser plasma interactions. Addison-Wesley, Reading, MA

    Google Scholar 

  8. Atzeni S, Meyer-ter-Vehn J (2004) The physics of inertial fusion. Clarendon Press, Oxford

    Google Scholar 

  9. Lindle I (1998) Inertial confinement fusion. Springer, New York

    Google Scholar 

  10. Hogan W (ed) (1995) Energy from inertial fusion. IAEA, Austria

    Google Scholar 

  11. Henderson D (ed) (2003) Frontiers in high energy density physics. National Research Council, The National Academies Press, Washington

    Google Scholar 

  12. Hammel BA (2006) the National ignition campaign team. The NIF ignition program: progress and planning. Plasma Phys Control Fusion 48(12B):B497–B506

    Google Scholar 

  13. Cavailler C (2005) Inertial fusion with the LMJ. Plasma Phys Control Fusion 47(12B):B389–B403

    Google Scholar 

  14. Betti R, Anderson K, Boehly TR et al (2006) Progress in hydrodynamics theory and experiments for direct-drive and fast ignition inertial confinement fusion. Plasma Phys Control Fusion 48(12B):B153–B163

    Google Scholar 

  15. Bunkenberg J, Boles J, Brown D et al (1981) The OMEGA high-power phosphate-glass system: design and performance. IEEE J Quantum Electron 17(9):1620–1628

    Google Scholar 

  16. Moses EI, Bonanno RE, Haynam CA et al (2006) The Natioal Ignition Facility: Path to ignition in the laboratory. Eur Phys J D 44(2):215–218

    Google Scholar 

  17. Giorla J, Bastian J, Bayer C et al (2006) Targe design for ignition experiments on the laser megajoule facility. Plasma Phys Contral Fusion 48(12B):B75–B82

    Google Scholar 

  18. Andre M (1999) Conceptual design of the French LMJ Laser. In: First SPIE international conference on solid state laser for application to ICF-Monteray. p 39.

    Google Scholar 

  19. Glenzer SH, MacGowan BJ, Meezan NB et al (2011) Demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraumes. Phys Rev Lett 106:085004.

    Google Scholar 

  20. Spielman RB, Deeney C, Chandler GA et al (1998) Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ. Phys Plasmas 5(5):2105–2111

    Google Scholar 

  21. Cuneo ME, Vesey RA, Bennett GR et al (2006) Progress in symmetric ICF capsule implosions and wire-array Z-pinch source physics for double-pinch-driven Hohlraums. Plasma Phys Control Fusion 48(2):R1–R35

    Google Scholar 

  22. Quintenz J, Sandia S (2000) Pulsed power team. Nagaoka, Japan

    Google Scholar 

  23. Jones B, Ampleford DJ, Vesey RA et al (2010) Planar wire-array Z-pinch implosion dynamics and X-ray scaling at multiple-MA drive currents for a compact multisource hohlraum configuration. Phys Rev Lett 104:125001

    Google Scholar 

  24. Sinars DB, Slutz SA, Herrmann MC et al (2011) Measurements of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid metal liners // Phys. Plasmas. 18(5):056301

    Google Scholar 

  25. Sharkov BY (2005) Nuclear fusion with inertial confinement. FIZMATLIT, Moscow [Yadernyy sintez s inertsionnym uderzhaniyem / Pod red. B. Yu. Sharkova. — M.: FIZMATLIT, 2005 (in Russian)]

    Google Scholar 

  26. Fortov VE, Hoffmann D, Sharkov BYu (2008) Intense Ion beams for generating extreme states of matter. Phys Usp 178(2):113 [Fortov V. E., Hoffmann D., Sharkov B. Yu. Intensivnyye ionnyye puchki dlya generatsii ekstremal'nykh sostoyaniy veshchestva // UFN. 2008. T. 178, № 2. S. 113 (in Russian)]

    Google Scholar 

  27. Hoffmann D, Tahir N, Udrea S et al (2010) High energy density physics with heavy ion beams and related interaction phenomena. Contrib Plasma Phys 50(1):7–15

    Google Scholar 

  28. Fortov VE, Ilkaev RI, Arinin VA et al (2007) Phase transition in a strongly nonideal deuterium plasma generated by Quasi-Isentropical compression at Megabar pressures. Phys Rev Lett 99(18):185001

    Google Scholar 

  29. Al’tshuler LV, Trunin RF, Urlin VD et al (1999) Development of dynamic methods of high pressure studies in Russia. Phys Usp 169(3):323 [Al’tshuler L. V., Trunin R. F., Urlin V. D. i dr. Razvitiye v Rossii dinamicheskikh metodov issledovaniy vysokikh davleniy // UFN. 1999. T. 169, № 3. S. 323 (in Russian)]

    Google Scholar 

  30. Al’tshuler L V (1965) Use of shock waves in high-pressure physics. Phys Usp 85(2):197 [Al’tshuler L. V. Primeneniye udarnykh voln v fizike vysokikh davleniy // UFN. 1965. T. 85, № 2. S. 197 (in Russian)]

    Google Scholar 

  31. Zel’dovich YB, Raizer YP (1966) Physics of shock waves and high-temperature hydrodynamic phenomena. Nauka, Moscow [Zel’dovich Ya. B., Raizer Yu. P. Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavleniy. — M.: Nauka, 1966 (in Russian)]

    Google Scholar 

  32. Nellis WJ (2006) Dynamic compression of materials: metallization of fluid hydrogen at high pressures. Rep Prog Phys 69(5):1479–1580

    Google Scholar 

  33. Fortov VE (2007) Powerful shock waves and extreme states of matter. Phys Usp 177(4):347 [Fortov V. E. Moshchnyye udarnyye volny i ekstremal'nyye sostoyaniya veshchestva // UFN. 2007. T. 177, №4. S. 347 (in Russian)]

    Google Scholar 

  34. Al’tshuler LV, Krupnikov KK, Fortov VE, Funtikov AI (2004) Basics of physics of megabar pressures. RAS Gazette 74(11):1011 [Al’tshuler L. V., Krupnikov K. K., Fortov V. E., Funtikov A. I. Nachalo fiziki mega-barnykh davleniy // Vestnik RAN. 2004. T. 74, № 11. S. 1011 (in Russian)]

    Google Scholar 

  35. Fortov VE, Altshuler LV, Trunin RF, Funtikov AI (2004) Shock waves and extreme states of matter. In: Graham R (ed) High pressure shock compression of solids, VII. Springer, New York

    Google Scholar 

  36. Zhernokletov MV, Zubarev VN, Trunin RF, Fortov VE .(1996) Experimental data on shock compressibility and adiabatic expansion of condensed matter at high energy densities. IHF RAS, Chernogolovka [Zhernokletov M. V., Zubarev V. N., Trunin R. F., Fortov V. E. Eksperimental'nyye dannyye po udarnoy szhimayemosti i adiabaticheskomu rasshireniyu kondensirovannykh veshchestv pri vysokikh plotnostyakh energii. — Chernogolovka: IKHF RAN, 1996 (in Russian)]

    Google Scholar 

  37. Avrorin EN, Vodolaga BK, Simonenko VA, Fortov VE (1993) Powerful shock waves and extreme states of matter. Phys Usp 163(5):1 [Avrorin E. N., Vodolaga B. K., Simonenko V. A., Fortov V. E. Moshchnyye udarnyye volny i ekstremal'nyye sostoyaniya veshchestva // UFN. 1993. T. 163, № 5. S. 1 (in Russian)]

    Google Scholar 

  38. Vladimirov AS, Voloshin NP, Nogin VN et al (1984) Shock compressibility of aluminum at P> 1 Gbar. JETP Lett 39(2):69–72 [Vladimirov A. S., Voloshin N. P., Nogin V. N. i dr. Udarnaya szhimayemost’ alyuminiya pri davleniyakh P>1 Gbar // Pis'ma ZHETF. 1984. T. 39, № 2. S. 69–72 (in Russian)]

    Google Scholar 

  39. Avrorin EN, Simonenko VA, Shibarshov L I (2006) Physical studies in nuclear explosions. Phys Usp 176(4):449 [Avrorin E. N., Simonenko V. A., Shibarshov L. I. Fizicheskiye issledovaniya pri yadernykh vzryvakh// UFN. 2006. T. 176, № 4. S. 449 (in Russian)]

    Google Scholar 

  40. Ginzburg VL (1995) On physics and astrophysics. Quantum Bureau, Moscow [Ginzburg V. L. O fizike i astrofizike. — M.: Byuro Kvantum, 1995 (in Russian)]

    Google Scholar 

  41. Zasov A.V, Postnov KA (2006) General astrophysics. Vek-2, . Fryazino [Zasov A. V., Postnov K. A. Obshchaya astrofizika. — Fryazino: Vek-2, 2006 (in Russian)]

    Google Scholar 

  42. Fortov V.E, Ternovoy V.Y. Zhernokletov MV et al (2003) Pressure-Induced Ionization of non-ideal plasma in Megabar range of dynamic pressures. JETP 124(2):288 [Fortov V. E., Ternovoy V. Ya., Zhernokletov M. V. i dr. Ionizatsiya davleniyem neideal'noy plazmy v megabarnom diapazone dinamicheskikh davleniy // ZHETF. 2003. T. 124, №2. S. 288 (in Russian)]

    Google Scholar 

  43. Mochalov MA, Il’kayev RI, Fortov VE et al (2017) JETP Lett 151:592–620 [Mochalov M. A., Il’kayev R. I., Fortov V. E. i dr. ZHETF. 2017. T. 151. S. 592–620 (in Russian)]

    Google Scholar 

  44. Maksimov EG, Magnitskaya MV, Fortov VE (2005) Difficult behavior of simple metals at high pressures. Phys Usp 175(8):793 [Maksimov E. G., Magnitskaya M. V., Fortov V. E. Neprostoye povedeniye prostykh metallov pri vysokikh davleniyakh// UFN. 2005. T. 175, № 8. S. 793 (in Russian)]

    Google Scholar 

  45. Mochalov MA, Il’kayev RI, Fortov VE et al (2010) Measurement of the compressibility of a Deuterium plasma at a pressure of 1800 GPa. JETP Lett 92(5):336–340 [Mochalov M. A., Il’kayev R. I., Fortov V. E. i dr. Izmereniye szhimayemosti deyteriyevoy plazmy pri davlenii 1800 GPa // Pis'ma ZHETF. 2010. T. 92, № 5. S. 336–340 (in Russian)]

    Google Scholar 

  46. Fortov VE, Gryaznov VK, Mintsev VB et al (2001) Thermophysical properties of shock compressed argon and xenon. Contrib Plasma Phys 41(2–3):215–218

    Google Scholar 

  47. Fortov V, Mintsev VB, Ternovoi VY et al (2004) Conductivity of nonideal plasma. Contrib Plasma Phys 8(3):447–459

    Google Scholar 

  48. Hawke PS, Burgess TJ, Duerre DE et al (1978) Observation of electrical conductivity of isentropically compressed hydrogen at megabar pressures. Phys Rev Lett 41(14):994–997

    Google Scholar 

  49. Pavlovski A, Boriskov G. et al (1987) Isentropic solid hydrogen compression by ultrahigh magnetic field pressure in megabar range. In: Fowler C, Caird R, Erickson D (eds) Megagauss technology and pulsed power applications. Plenum Press, London, 255; Gryaznov VK, Zhernokletov MV, Iosilevski IL et al (1998) Shock-wave compression and thermodynamics of highly non-ideal metal plasma. JETP 114(4):1242 [Gryaznov V. K., Zhernokletov M. V., Iosilevski I. L. i dr. Udarno-volnovoye szhatiye sil'noneideal'noy plazmy metallov i yeye termodinamika // ZHETF. 1998. T. 114, №4. S. 1242 (in Russian)]

    Google Scholar 

  50. Gryaznov VK, Nikolayev DN, Ternovoy VYa et al (1998) Generation of non-ideal plasma by shock-wave compression of highly porous SiO2-aerogel. Chem Phy 17(2):33–37 [Gryaznov V. K., Nikolayev D. N., Ternovoy V. Ya. i dr. Generatsiya neideal'noy plazmy putem udarnovolnovogo szhatiya vysokoporistogo SiO2-aerogelya // Khimicheskaya fizika. 1998. T.17, №2. S. 33–37 (in Russian)]

    Google Scholar 

  51. Fortov VE (ed) (2000) Encyclopedia of low-temperature plasma. Nauka, Moscow [Entsiklopediya nizkotemperaturnoy plazmy / Pod red. V.Ye. Fortova. — M.: Nauka, 2000 (in Russian)]

    Google Scholar 

  52. Mintsev VB, Fortov VE (1982) Explosive shock tubes. High Temp 20(4):745 [Mintsev V. B., Fortov V. E. Vzryvnyye udarnyye truby // TVT. 1982. T.20, №4. S. 745 (in Russian)]

    Google Scholar 

  53. Zhernokletov MV (1998) Shock compression and isentropic expansion of natural uranium. High Temp 36(2): 231 [Zhernokletov M. V. Udarnoye szhatiye i izoentropicheskoye rasshireniye prirodnogo urana // TVT. 1998. T.36, №2. S. 231 (in Russian)]

    Google Scholar 

  54. Mochalov MA, Il’kayev RI, Fortov VE et al (2010) JETP Lett 92(5):336 [Mochalov M. A., Il’kayev R. I., Fortov V. E. i dr. // Pis'ma ZHETF. 2010. T. 92, № 5. S. 336 (in Russian)]

    Google Scholar 

  55. Mochalov MA, Il’kayev RI, Fortov VE et al (142) JETP Lett 696 (2012) [Pis'ma ZHETF. 142. S. 696 (2012) (in Russian)]

    Google Scholar 

  56. Mochalov MA, Il’kayev RI, Fortov VE et al (2014) JETP Lett146:169 (2014) [Mochalov M. A., Il’kayev R. I., Fortov V. E. i dr. // Pis'ma ZHETF. T. 146. S. 169 (2014) (in Russian)]

    Google Scholar 

  57. Al’tshuler LV, Krupnikov KK, Ledenev VN, Zhuchikhiv VI, Brazhnik M I (1958) JETP 34:874 [Al’tshuler L. V., Krupnikov K. K., Ledenev V. N., Zhuchikhiv V. I., Brazhnik M. I. // ZHETF. 1958. T. 34. S. 874]

    Google Scholar 

  58. Al’tshuler LV, Krupnikov KK, Brazhnik MI (1958) JETP V. 34:886 [Al’tshuler L. V., Krupnikov K. K., Brazhnik M. I. // ZHETF. 1958. T. 34. S. 886 (in Russian)]

    Google Scholar 

  59. Al’tshuler LV, Kormer SB, Bakanova AA, Trunin RF (1960) JETP 38:790 [Al’tshuler L. V., Kormer S. B., Bakanova A. A., Trunin R. F. // ZHETF. 1960. T. 38. S. 790 (in Russian)]

    Google Scholar 

  60. Al’tshuler LV, Kormer SB, Brazhnik MI, Vladimirov LA, Speranskaya MP, Funtikov A I (1960) JETP 38:1061 [Al’tshuler L. V., Kormer S. B., Brazhnik M. I., Vladimirov L. A., Speranskaya M. P., Funtikov A. I. // ZHETF. 1960. T. 38. S. 1061 (in Russian)]

    Google Scholar 

  61. Al’tshuler LV, Kuleshova LV, Pavslovskiy MN JETP 39 [Al’tshuler L. V., Kuleshova L. V., Pavslovskiy M. N. // ZHETF. 1960. T. 39 (in Russian)]

    Google Scholar 

  62. Walsh JM, Christian RH (1955) Phys Rev 97:1544

    Google Scholar 

  63. Walsh JM, Rise MH, McQueen RG, Yargen FL (1957) Phys Rev 1957 108:196

    Google Scholar 

  64. Goranson W, Bankroft D et al (1960) J Appl Phys 31:1253

    Google Scholar 

  65. Mallory D (1960) J Appl Phys 31:1253

    Google Scholar 

  66. McQueen RG, Marsh S (1960) P J Appl Phys 31:1253

    Google Scholar 

  67. Kanel GI, Rasorenov SV, Fortov VE (2004) Shock-wave phenomena and properties of condensed matter Springer, New York

    Google Scholar 

  68. Fortov VE, Khrapak AG, Yakubov IT (2004) Physics of non-ideal plasma. FIZMATLIT, Moscow [Fortov V. E., Khrapak A. G., Yakubov I. T. Fizika neideal'noy plazmy. — M.: FIZMATLIT, 2004 (in Russian)]

    Google Scholar 

  69. Zababakhin EI, Zababakhin IE (1988) Phenomenon of unbounded cumulation. Nauka, Moscow [Zababakhin E. I., Zababakhin I. E. Yavleniya neogranichennoy kumulyatsii. — M.: Nauka, 1988 (in Russian)]

    Google Scholar 

  70. Nabatov SS, Dremin AN, Postnov VI, Yakushev V V (1979) Measurements of sulfur electrical conductivity at super-high dynamic pressures. JETP Lett 29(7): 407 [S. S., Dremin A. N., Postnov V. I., Yakushev V. V. Izmereniye elektroprovodnosti sery pri sverkhvysokikh dinamicheskikh davleniyakh // Pis'ma ZHETF. 1979. T. 29, № 7. S. 407 (in Russian)]

    Google Scholar 

  71. Fortov VE, Yakushev VV, Kagan KL et al (1999) Abnormal electrical conductivity of lithium in Quasi-Isentropic compression up to 60 GPa (0.6 Mbar). Transition to molecular phase? JETP Lett 70(9):620 [Fortov V. E., Yakushev V. V., Kagan K. L. i dr. Anomal'naya elektroprovodnost’ litiya pri kvaziizoentropicheskom szhatii do 60 GPa (0,6 Mbar). Perekhod v molekulyarnuyu fazu? // Pis'ma ZHETF. 1999. T. 70, № 9. S. 620 (in Russian)]

    Google Scholar 

  72. Al’tshuler LV, Trunin RF, Krupnikov KK, Panov NV (1996) Explosive laboratory devices for studying matter compression in shock waves. Phys Usp 166(5):575 [Al’tshuler L. V., Trunin R. F., Krupnikov K. K., Panov N. V. Vzryvnyye laboratornyye ustroystva dlya issledovaniya szhatiya veshchestv v udarnykh volnakh// UFN. 1996. T. 166, № 5. S. 575 (in Russian)]

    Google Scholar 

  73. Fortov VE (2009) Extreme states of matter. FIZMATLIT, Moscow [Fortov V. E. Ekstremal'nyye sostoyaniya veshchestva. — M.: FIZMATLIT, 2009 (in Russian)]

    Google Scholar 

  74. Da Silva LB, Celliers P, Collins GW et al (1997) Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar) Phys Rev Lett 78(3):483–486

    Google Scholar 

  75. Collins GW, Da Silva LB,  Celliers P et al (1998) Measurements of the equation of state of deuterium at the fluid insulator-metal transitionScience 281(5380):1178–1181

    Google Scholar 

  76. Knudson MD, Hanson DL, Bailey JE et al (2004) Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques. Phys Rev B 69:144209

    Google Scholar 

  77. Knudson MD, Hanson DL, Bailey JE et al (2003) Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa. Phys Rev Lett 90:035505

    Google Scholar 

  78. Grigoryev FB, Kormer SB, Mikhailova OL et al (1972) JETP Lett 16:286 [Grigoryev F. B., Kormer S. B., Mikhailova O. L. i dr. // Pis'ma ZHETF. 1972. T.16. S. 286 (in Russian)]

    Google Scholar 

  79. Grigoryev FB, Kormer SB, Mikhailova OL et al (1999) JETP Lett 199916(9):286 [Grigoryev F. B., Kormer S. B., Mikhailova O. L. i dr. // Pis'ma ZHETF. 1999. T.16, №9. S. 286 (in Russian)]

    Google Scholar 

  80. Fortov VE, Ilkaev RI, Arinin VA et al (2007) Phys Rev Lett 99:185001

    Google Scholar 

  81. Mochalov MA, Zhernokletov MV, Il’kayev RI et al (2010) Experimental measurement of density, temperature and electrical conductivity of shocked non-Ideal plasma of nitrogen in megabar pressure range. JETP 137(1):77–92 [Mochalov M. A., Zhernokletov M. V., Il’kayev R. I. i dr. Eksperimental'noye izmereniye plotnosti, temperatury i elektroprovodnosti udarno-szhatoy neideal'noy plazmy azota v megabarnom diapazone davleniy // ZHETF. 2010. T. 137, № 1. S. 77–92 (in Russian)]

    Google Scholar 

  82. Bazanov OV, Bespalov V et al (1985) Irregular reflection of conic converging shock waves in plexiglass and copper.High Temp 23(5):976[Bazanov O. V., Bespalov V. i dr. Neregulyarnoye otrazheniye konicheskikh skhodyashchikhsya udarnykh voln v pleksiglase i medi // TVT. 1985. T. 23, № 5. S. 976 (in Russian)]

    Google Scholar 

  83. Knudson MD, Hanson DL, Bailey JE et al (2001) Equation of State Measurements in Liquid Deuterium to 70 GPa. Phys Rev Lett 87(22):225501

    Google Scholar 

  84. Knudson MD, Derjarlais MP et al (2015) Sciences 348(6249)

    Google Scholar 

  85. Knudson MD, Derjarlais MP et al www.sciencemag.org/conters.

  86. Trunin RF, Podurets MA, Simakov GV et al (1972) Experimental check of Thomas-Fermi model for metals at high pressures. JETP 62(3):1043–1048 [Trunin R. F., Podurets M. A., Simakov G. V. i dr. Eksperimental'naya proverka modeli Tomasa-Fermi dlya metallov pri vysokikh davleniyakh// ZHETF. 1972. T. 62, № 3. S. 1043–1048 (in Russian)]

    Google Scholar 

  87. Fortov VE, Lomonosov IV (1997) Thermodynamics of extreme states of matter. Pure Appl Chem 69(4):893–904

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Fortov .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fortov, V. (2021). Shock Waves in High-Pressure Physics. In: Intense Shock Waves on Earth and in Space. Shock Wave and High Pressure Phenomena. Springer, Cham. https://doi.org/10.1007/978-3-030-74840-1_3

Download citation

Publish with us

Policies and ethics