Skip to main content

Biotechnological Approach to Cultivation of Rhododendron tomentosum (Ledum palustre) as the Source of the Biologically Active Essential Oil

  • Chapter
  • First Online:
Medicinal Plants

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 28))

  • 2129 Accesses

Abstract

Rhododendron tomentosum (marsh tea, previously Ledum palustre), a fragrant shrub with characteristic evergreen leaves and white flowers, grows in Europe, Asia, and North America. It has been used for centuries in folk medicine to treat rheumatic diseases, lung problems, and infections as well as due to its repellent properties. In North America, the tonic beverage known as “Labrador tea”, derived from the indigenous tradition and made from R. tomentosum, R. groenlandicum and R. neoglandulosum leaves, is prepared until now. The modern biological research confirm anti-inflammatory, analgesic, antimicrobial and insecticidal effect of the discussed plant material, indicating an important role of the essential oil as an active ingredient. However, obtaining the volatile fraction from R. tomentosum ground material for pharmacological studies is difficult because marsh tea is the endangered species in some countries. Moreover, as many as ten chemotypes of R. tomentosum on the Eurasian continent have been distinguished, due to the chemical composition of the essential oil. Such heterogeneity of the plant material is problematic, assuming its use for medical purposes. Therefore, the shoot in vitro culture was initiated for the first time for receiving the R. tomentosum biomass, being the complex source of biologically active volatile compounds, regardless of environmental conditions. The microshoots were subsequently adapted for large laboratory scale cultivation in commercial and prototype bioreactors. The RITA® temporary immersion system, containing SH medium with 24.60 μM 2-isopentenyladenine and 592.02 μM adenine, provided the highest growth parameters of biomass (Gi = 280%) and the intensified biosynthesis of the essential oil (500 μl 100 g−1 dry weight), surpassing the productivity of the aged shoots of the mother plant (300 μl 100 g−1 dry weight). The main terpenes of the obtained volatile fraction were ledene oxide (II) (13%), shyobunone (8%), p-cymene (7%), and alloaromadendrene (6%). In order to increase the essential oil content in the R. tomentosum microshoots, elicitation strategy was applied, using methyl jasmonate and the selected abiotic and biotic elicitors. In response to stress caused by the aphid extract and Pectobacterium carotovorum lysate, the accumulation of the volatile fraction increased by 14%. In addition, the full protocol for micropropagation of marsh tea was developed, including initiation, multiplication, elongation, rooting, hardening, and adaptation of the seedlings to in vivo conditions, for ex situ protection of the discussed endangered species. This article reviews the importance of R. tomentosum from a medical point of view as well as the biotechnological approach obtaining an alternative source of this valuable biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2iP:

2-Isopentenyladenine

AD:

Adenine

AR:

Anderson’s Rhododendron medium

DW:

Dry weight

EO:

Essential oil

Gi:

Growth index

RAPD:

Random DNA

SH:

Schenk–Hildebrandt medium

TDZ:

Thidiazuron

WP:

Woody plant medium

References

  • Alm T, Iversen M (2010) Norway's Rosmarin (Rhododendron tomentosum) in past and present tradition. In: Pardo-de-Santayana M, Pieroni A, Puri RK (eds) Ethnobotany in the New Europe: people, health and wild plant resources. Berghahn Books, pp 263–270

    Google Scholar 

  • Baananou S, Bagdonaite E, Marongiu B, Piras A, Porcedda S, Falconieri D, Boughattas NA (2015) Supercritical CO2 extract and essential oil of aerial part of Ledum palustre L. Chemical composition and anti-inflammatory activity. Nat Prod Res 29:999–1005

    Article  CAS  PubMed  Google Scholar 

  • Baldwin TA (2003) Effects of resource limitation on the essential oil production in Ledum palustre ssp decumbens (Ait.) Hultén. Master thesis, Florida International University, Miami, Florida

    Google Scholar 

  • Belleau F, Collin G (1993) Composition of the essential oil of Ledum groenlandicum. Phytochemistry 33(1):117–121

    Article  CAS  Google Scholar 

  • Belousov MV, Saratikov AS, Akhmedzhanov RR, Berezovskaya TA, Yusubov MS, Dmitruk SE, Basova EV (2006) Pharmacological properties of Ledum palustre (Ericaceae) from Tomsk region. Rastitelnye Resursy 42:130–140

    Google Scholar 

  • Belousova NI, Khan VA, Berezovskaya TP (1990) Intraspecies chemical variability of the essential oil of Ledum palustre. Chem Nat Compd 26:398–405

    Article  Google Scholar 

  • Benelli G, Pavela R, Cianfaglione K, Sender J, Urban D, Maślanko W, Canale A, Barboni L, Petrelli R, Zeppa L, Aguzzi C, Maggi F (2020) Ascaridole-rich essential oil from marsh rosemary (Ledum palustre) growing in Poland exerts insecticidal activity on mosquitoes, moths and flies without serious effects on non-target organisms and human cells. Food Chem Toxicol 138:111184

    Google Scholar 

  • Black P, Saleem A, Dunford A, Guerrero-Analco J, Walshe-Roussel B, Haddad P, Cuerrier A, Arnason JT (2011) Seasonal variation of phenolic constituents and medicinal activities of Northern Labrador tea, Rhododendron tomentosum ssp. subarcticum, an Inuit and Cree First Nations traditional medicine. Planta Med 77:1655–1662

    Article  CAS  PubMed  Google Scholar 

  • Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161:839–851

    Article  CAS  Google Scholar 

  • Butkiene R, Mockute D (2011) The variability of the essential oil composition of wild Ledum palustre L. shoots during vegetation period. J Essent Oil Res 23:9–13

    Article  CAS  Google Scholar 

  • Butkiene R, Sakociute V, Latvenaite D, Mockute D (2008) Composition of young and aged shoot essential oils of the wild Ledum palustre L. Chemija 19:19–24

    CAS  Google Scholar 

  • Chosson E, Chaboud A, Chulia AJ, Raynaud J (1998) Dihydroflavonol glycosides from Rhododendron ferrugineum. Phytochemistry 49:1431–1433

    Article  CAS  Google Scholar 

  • Collin (2015) Aromas from Quebec. IV. Chemical composition of the essential oil of Ledum groenlandicum: a review. Am J Essent Oil Nat Prod 2(3):06–11

    Google Scholar 

  • Dampc A, Łuczkiewicz M (2013) Rhododendron tomentosum (Ledum palustre): a review of traditional use based on current research. Fitoterapia 85:130–143

    Article  CAS  PubMed  Google Scholar 

  • Dampc A, Łuczkiewicz M (2015) Labrador tea: the aromatic beverage and spice: a review of origin, processing and safety. J Sci Food Agric 95:1577–1583

    Article  CAS  PubMed  Google Scholar 

  • Dubois MA, Wierer M, Wagner H (1990) Palustroside, a coumarin glucoside ester from Ledum palustre. Phytochemistry 29:3369–3371

    Article  CAS  Google Scholar 

  • Egigu MC, Ibrahim MA, Yahya A, Holopainen JK (2011) Cordeauxia edulis and Rhododendron tomentosum extracts disturb orientation and feeding behavior of Hylobius abietis and Phyllodecta laticollis. Entomol Exp Appl 138:162–174

    Article  Google Scholar 

  • Evstratova RI, Kabanov VS, Krylova IL, Prokosheva LI (1978) Content of essential oil and of ledol in leaves of marsh rosemary (Ledum palustre L.) during different phases of vegetation. Pharm Chem J 12:1468–1473

    Article  Google Scholar 

  • Flora of North America (2020) 8:459–460. Sept 2020. Available online at: https://eFloras.org

  • Fokina GI, Frolova TV, Roikhel VM, Pogodina VV (1991) Experimental phytotherapy of tick-borne encephalitis. Vopr Virusol 36:18–21

    CAS  PubMed  Google Scholar 

  • Fraser MH, Cuerrier A, Haddad PS, Arnason JT, Owen PL, Johns T (2007) Medicinal plants of Cree communities (Quebec, Canada): antioxidant activity of plants used to treat type 2 diabetes symptoms. Can J Physiol Pharmacol 85:1200–1214

    Article  CAS  PubMed  Google Scholar 

  • Gapanenko W, Levashova O (2015) Phytochemical study of phenolic compounds of labrador tea (Ledum palustre L.). ScienceRise 11(4):14–19

    Google Scholar 

  • Goun EA, Petrichenko VM, Solodnikov SU, Suhinina TV, Kline MA, Cunningham G, Nguyen Ch, Miles H (2002) Anticancer and antithrombin activity of Russian plants. J Ethnopharmacol 81:337–342

    Article  PubMed  Google Scholar 

  • Gretsusnikova T, Jarvan K, Orav A, Koel M (2010) Comparative analysis of the composition of the essential oil from the shoots, leaves and stems the wild Ledum palustre L. from Estonia. Procedia Chem 2:168–173

    Article  CAS  Google Scholar 

  • Grzegorczyk I, Wysokińska H (2008) Liquid shoot culture of Salvia officinalis L. for micropropagation and production of antioxidant compounds; effect of triacontanol. Acta Soc Bot Pol 77:99–104

    Article  CAS  Google Scholar 

  • Harbilas D, Martineau LC, Harris CS, Adeyiwola-Spoor DC, Saleem A, Lambert J, Caves D, Johns T, Prentki M, Cuerrier A, Arnason JT, Bennett SAL, Haddad PS (2009) Evaluation of the antidiabetic potential of selected medicinal plant extracts from the Canadian boreal forest used to treat symptoms of diabetes: part II. Can J Physiol Pharmacol 87:479–492

    Article  CAS  PubMed  Google Scholar 

  • Harmaja H (1991) Taxonomic notes on Rhododendron subsection Ledum (Ledum, Ericaceae), with a key to its species. Ann Bot Fenn 28:171–173

    Google Scholar 

  • Ignatowicz S, Wesołowska B (1996) Repellency of powdered plant material of the Indian neem tree, the Labrador tea, and the sweet-flag, to some stored product pests. Pol Pismo Entomol 65:61–67

    Google Scholar 

  • Jaenson TG, Palsson K, Borg-Karlson AK (2005) Evaluation of extracts and oils of tick-repellent plants from Sweden. Med Vet Entomol 19:345–352

    Article  CAS  PubMed  Google Scholar 

  • Jaenson TG, Palsson K, Borg-Karlson AK (2006) Evaluation of extracts and oils of mosquito (Diptera: Culicidae) repellent plants from Sweden and Guinea-Bissau. J Med Entomol 43:113–119

    Article  CAS  PubMed  Google Scholar 

  • Jesionek A, Kokotkiewicz A, Włodarska P, Filipowicz N, Bogdan A, Ochocka R, Szreniawa-Sztajnert A, Zabiegała B, Buciński A, Łuczkiewicz M (2016) In vitro propagation of Rhododendron tomentosum: an endangered essential oil bearing plant from peatland. Acta Biol Crac Ser Bot 58:29–43

    CAS  Google Scholar 

  • Jesionek A, Kokotkiewicz A, Włodarska P, Zabiegała B, Buciński A, Łuczkiewicz M (2017) Bioreactor shoot cultures of Rhododendron tomentosum (Ledum palustre) for a large-scale production of bioactive volatile compounds. Plant Cell Tiss Org Cult 131:51–64

    Article  CAS  Google Scholar 

  • Jesionek A, Kokotkiewicz A, Królicka A, Zabiegała B, Łuczkiewicz M (2018a) Elicitation strategies for the improvement of essential oil content in Rhododendron tomentosum (Ledum palustre) bioreactor-grown microshoots. Ind Crops Prod 123:461–469

    Article  CAS  Google Scholar 

  • Jesionek A, Pobłocka-Olech L, Zabiegała B, Buciński A, Krauze-Baranowska M, Łuczkiewicz M (2018b) Validated HPTLC method for determination of ledol and alloaromadendrene in the essential oil fractions of Rhododendron tomentosum plants and in vitro cultures and bioautography for their activity screening. J Chromatogr B 1086:63–72

    Article  CAS  Google Scholar 

  • Jesionek A, Zabiegała B, Buciński A, Łuczkiewicz M (2019a) From harvesting to distillation—effect of analytical procedures on the yield and chemical composition of Rhododendron tomentosum (Ledum palustre) essential oil. Acta Pol Pharm Drug Res 76:83–92

    Google Scholar 

  • Jesionek A, Kokotkiewicz A, Mikosik-Roczyńska A, Ciesielska-Figlon K, Łuczkiewicz P, Buciński A, Daca A, Witkowski JM, Bryl E, Zabiegała B, Łuczkiewicz M (2019b) Chemical variability of Rhododendron tomentosum (Ledum palustre) essential oils and their proapoptotic effect on lymphocytes and rheumatoid arthritis synoviocytes. Fitoterapia 139:104402

    Google Scholar 

  • Jin C, Strembiski W, Kulchytska Y, Micetich RG, Danesstalab M (1999) Flavonoid glycosides from Ledum palustre L. subsp. decumbens (Ait.) Hulton. DARU J Pharm Sci 7(4):5–8

    Google Scholar 

  • Judzentiene A, Budiene J, Misiunas A, Butkiene R (2012a) Variation in essential oil composition of Rhododendron tomentosum gathered in limited population (in Eastern Lithuania). Chemija 23:131–135

    CAS  Google Scholar 

  • Judzentiene A, Butkiene R, Budiene J, Tomi F, Casanova J (2012b) Composition of seed essential oils of Rhododendron tomentosum. Nat Prod Commun 7:227–230

    CAS  PubMed  Google Scholar 

  • Judzentiene A, Budiene J, Svediene J, Garjonyte R (2020) Toxic, radical scavenging, and antifungal activity of Rhododendron tomentosum H. essential oils. Molecules 25:1676

    Google Scholar 

  • Kasper-Pakosz R, Pietras M, Łuczaj Ł (2016) Wild and native plants and mushrooms sold in the open-air markets of south-eastern Poland. J Ethnobiol Ethnomed 12:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim D-M, Nam B-W (2006) Extracts and essential oil of Ledum palustre L. leaves and their antioxidant and antimicrobial activities. J Food Sci Nutr 11:100–104

    CAS  Google Scholar 

  • Klokova MV, Serykh EA, Berezovskaya TP (1982) Ledum genus coumarins. Khim Prirodnykh Soedin 4:517

    Google Scholar 

  • Kron KA, Judd WS (1990) Phylogenetic relationships within the Rhodoreae (Ericaceae) with specific comments on the placement of Ledum. Syst Bot 15:57–68

    Article  Google Scholar 

  • Kuusik A, Harak M, Hiiesaar K, Metspalu L, Tartes U (1995) Studies on insect growth regulating (IGR) and toxic effects of Ledum palustre extracts on Tenebrio molitor pupae (Coleoptera, Tenebrionidae) using calorimetric recordings. Thermochim Acta 251:247–253

    Article  CAS  Google Scholar 

  • Migas P, Łuczkiewicz M, Cisowski W (2006) The influence of auxins on the biosynthesis of isoprene derivatives in callus cultures of Vaccinium corymbosum var. bluecrop. Z Naturforsch C 61:565–570

    Article  CAS  PubMed  Google Scholar 

  • Mikhailova NS, Rybalko KS (1980) Chemical constitution of Ledum palustre. Chem Nat Compd 16:131–135

    Article  Google Scholar 

  • Mulder-Krieger T, Verpoorte R, Svendsen AB, Scheffer JJC (1988) Production of essential oils and flavours in plant cell and tissue cultures. A review. Plant Cell Tissue Organ Cult 13:85–154

    Article  CAS  Google Scholar 

  • Narimanov AA, Miakisheva SN, Kuznetsova SM (1991) The radioprotective effect of extracts of Archangelica officinalis Hoffm. and Ledum palustre L. on mice. Radiobiologiia 31:391–393

    CAS  PubMed  Google Scholar 

  • Raal A, Orav A, Gretchushnikova T (2014) Composition of the essential oil of the Rhododendron tomentosum Harmaja from Estonia. Nat Prod Res 28:1091–1098

    Article  CAS  PubMed  Google Scholar 

  • Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    Article  CAS  PubMed  Google Scholar 

  • Reichardt PB, Bryant JP, Anderson BJ, Phillips D, Clausen TP, Meyer M, Frisby K (1990) Germacrone defends Labrador tea from browsing by snowshoe hares. J Chem Ecol 16(6):1961–1970

    Article  CAS  PubMed  Google Scholar 

  • Shikov AN, Pozharitskaya ON, Makarov VG, Wagner H, Verpoorte R, Heinrich M (2014) Medicinal plants of the Russian Pharmacopoeia; their history and applications. J Ethnopharmacol 154:481–536

    Article  PubMed  Google Scholar 

  • Soukand R, Kalle R, Svanberg I (2010) Uninvited guests: traditional insect repellents in Estonia used against the clothes moth Tineola bisselliella, human flea Pulex irritons and bedbug Cimex lectularius. J Insect Sci 10:150

    Article  PubMed  PubMed Central  Google Scholar 

  • Spiridonov NA, Konovalov DA, Arkhipov VV (2005) Cytotoxicity of some Russian ethnomedicinal plants and plant compounds. Phytother Res 19:428–432

    Article  CAS  PubMed  Google Scholar 

  • Świejkowski L (1950) Właściwości trujące polskich roślin leczniczych. Wydawnictwo Polskiego Związku Zielarskiego, Kraków, Poland, pp 60–61

    Google Scholar 

  • Tunon H, Olavsdotter C, Bohlin L (1995) Evaluation of anti-inflammatory activity of some Swedish medicinal plants. Inhibition of prostaglandin biosynthesis and PAF-induced exocytosis. J Ethnopharmacol 48:61–76

    Article  CAS  PubMed  Google Scholar 

  • von Schantz M, Hiltunen R (1971) Über die Zusammensetzung des ätherischen Öles von Ledum palustre L. einschließlich der geographischen Rassen ssp. groenlandicum (Oeder) Hult. und ssp. decumbens (Ait.) Hult Sci Pharm 39(3):137–146

    Google Scholar 

  • Wagner H, Wierer M, Bauer R (1986) In vitro Hemmungder Prostaglandin-Biosynthese durch etherische Ole und phenolische Verbindungen. Planta Med 3:184–187

    Article  Google Scholar 

  • Watt MP (2012) The status of temporary immersion system (TIS) technology for plant micropropagation. Afr J Biotechnol 11:14025–14035

    CAS  Google Scholar 

  • Zhang M, Zhao J-J, Wu W-B, Zhao Y, Zhu X-L, Qu W-J (2010) Analgesic and anti-inflammatory activities of extracts from Ledum palustre L. in mice. Nat Prod Res Dev 22:326–329

    Google Scholar 

  • Zhang LL, Wang HX, Wang YM, Xu M, Hu XY (2017) Diurnal effects on chinese wild Ledum palustre L. essential oil yields and composition. J Anal Sci Meth Instr 7:47–55

    CAS  Google Scholar 

  • Zhao Q, Ding Q, Yuan G, Xu F, Li B, Wang J, Ouyang J (2016) Comparison of the essential oil composition of wild Rhododendron tomentosum stems, leaves, and flowers in bloom and non-bloom periods from Northeast China. J Essent Oil Bear Plants 19:1216–1223

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The conducted research on Rhododendron tomentosum received funding from the National Science Center in Poland (decision no. UMO-2014/15/N/NZ7/03027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Luczkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jesionek, A., Kokotkiewicz, A., Luczkiewicz, M. (2021). Biotechnological Approach to Cultivation of Rhododendron tomentosum (Ledum palustre) as the Source of the Biologically Active Essential Oil. In: Ekiert, H.M., Ramawat, K.G., Arora, J. (eds) Medicinal Plants. Sustainable Development and Biodiversity, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-030-74779-4_18

Download citation

Publish with us

Policies and ethics