Abstract
A review of various priors used in Bayesian estimation under the two-parameter logistic model is presented together with clear mathematical definitions of the prior distributions. Examples that compared Bayesian estimation methods are presented using empirical data. The effects of the priors and their specifications on both item and ability parameter estimates are demonstrated. The computer program OpenBUGS that implements the rejection sampling method is the main program employed in the study. Issues in Bayesian estimation and use of priors in item response theory are discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Albert, J. H. (1992). Bayesian estimation of normal ogive item response curves using Gibbs sampling. Journal of Educational Statistics, 17, 251–269.
Birnbaum, A. (1969). Statistical theory for logistic mental test models with a prior distribution of ability. Journal of Mathematical Psychology, 6, 258–276.
Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Applications of an EM algorithm. Psychometrika, 46, 443–459.
Bock, R. D., & Lieberman, M. (1970). Fitting a response model for n dichotomously scored items. Psychometrika, 35, 179–197.
du Toit, M. (Ed.). (2003). IRT from SSI: BILOG-MG, MULTILOG, PARSCALE, TESTFACT. Chicago, IL: Scientific Software International.
Fox, J.-P. (2010). Bayesian item response modeling: Theory and applications. New York, NY: Springer.
Gonzalez, J. (2010). Bayesian methods in psychological research: The case of IRT. International Journal of Psychological Research, 3(1), 164–176.
Isaacs, G. I., Christ, D. E., Novick, M. R., & Jackson, P. H. (1974). Tables for Bayesian statisticians. The Iowa Testing Program, The University of Iowa, Iowa City, IA.
Johnson, M. S., & Sinharay, S. (2016). Bayesian etimation. In W. J. van der Linden (Ed.), Handbook of item response theory, Volume 2: Statistical tools (pp. 237–257). Boca Raton, FL: CRC Press.
Kim, J.-S., & Bolt, D. M. (2007). Estimating item response theory models using Markov chain Monte Carlo methods. Educational Measurement: Issues and Practice, 26(4), 38–51.
Kim, S.-H. (2001). An evaluation of a Markov chain Monte Carlo method for the Rasch model. Applied Psychological Measurement, 25, 163–176.
Kim, S.-H., Cohen, A. S., Baker, F. B., Subkoviak, M. J., & Leonard, T. (1994). An investigation of hierarchical Bayes procedures in item response theory. Psychometrika, 59, 405–421.
Leonard, T., & Novick, M. R. (1985). Bayesian inference and diagnostics for the three parameter logistic model (ONR Technical Report Np. 85-5). Iowa City, IA: The University of Iowa, Cada Research Group. (ERIC Document Reproduction Service No. ED261068).
Levy, R., & Mislevy, R. J. (2016). Bayesian psychometric modeling. Boca Raton, FL: CRC Press.
Lindley, D. V., & Smith, A. F. (1972). Bayesian estimates for the linear model. Journal of the Royal Statistical Society, Series B, 34, 1–41.
Lunn, D., Jackson, C., Best, N., Thomas, A., & Spiegelhalter, D. (2013). The BUGS book: A practical introduction the Bayesian analysis. Boca Raton, FL: CRC Press.
Marcoulides, K. M. (2018). Careful with those priors: A note on Bayesian estimation in two-parameter logistic item response theory models. Measurement, 16, 92–99.
Mislevy, R. J. (1986). Bayes modal estimation in item response models. Psychometrika, 51, 177–195.
Novick, M. R., & Jackson, P. H. (1974). Statistical methods for educational and psychological research. New York, NY: McGraw-Hill.
Novick, M. R., Lewis, C., & Jackson, P. H. (1973). The estimation of proportions in n groups. Psychometrika, 38, 19–46.
Spiegelhalter, D., Thomas, A., Best, N., & Lunn, D. (2014). OpenBUGS user manual. Cambridge, UK: MRC Biostatistics Unit, Institute of Public Health.
Stone, C. A., & Zhu, X. (2015). Bayesian analysis of item response theory models using SAS. Cary, NC: SAS Institute.
Swaminathan, H., & Gifford, J. A. (1982). Bayesian estimation in the Rasch model. Journal of Educational Statistics, 7, 175–191.
Swaminathan, H., & Gifford, J. A. (1985). Bayesian estimation in the two-parameter logistic model. Psychometrika, 50, 349–364.
Swaminathan, H., & Gifford, J. A. (1986). Bayesian estimation in the three-parameter logistic model. Psychometrika, 51, 589–601.
Thissen, D., Chen, W.-H., & Bock, R. D. (2002). MULTILOG [Computer software]. Lincolnwood, IL: Scientific Software International.
Tsutakawa, R. K., & Lin, H. Y. (1986). Bayesian estimation of item response curves. Psychometrika, 51, 251–267.
Wright, B. D., & Stone, M. H. (1979). Best test design. Chicago, IL: MESA Press.
Zimowski, M. F., Muraki, E., Mislevy, R. J., & Bock, R. D. (2002). BILOG-MG [Computer software]. Lincolnwood, IL: Scientific Software International.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendices
Appendix A: OpenBUGS Code
model { # 2PL model for (i in 1:I) { for (j in 1:J) { logit(p[i, j]) <- alpha[j] ∗ (theta[i] - beta[j]) x[i, j] ~ dbern(p[i, j]) } # ability prior theta[i] ~ dnorm(0, 1) } # item Priors for (j in 1:J) { a[j] ~ dchisqr(10) alpha[j] <- sqrt(a[j] ∗ 0.1) beta[j] ~ dunif(-5, 5) # beta[j] ~ dnorm(mub, taub) # GS2 # alpha[j] ~ dlnorm(0, 2) # GS3 # beta[j] ~ dnorm(0, 0.5) # GS3 } # hyperpriors # mub ~ dflat() # GS2 # taub ~ dgamma(2.5, 5) # GS2 } # kct data list(I = 35, J = 18, x = structure(.Data = c( 1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0, 1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, 1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0, 1,1,1,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0, 1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, 1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, 1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0, 1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, 1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, 1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0, 1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0, 1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0,0,0, 1,1,1,1,1,0,0,1,1,1,1,1,0,0,0,0,0,0, 1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0, 1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0, 1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0, 1,1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0,0, 1,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0, 1,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0, 1,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0, 1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0, 1,1,1,1,1,1,1,1,1,1,0,0,1,1,0,0,0,0, 1,1,1,1,1,1,1,1,1,1,1,0,1,0,0,1,1,0, 1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0, 1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, 1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0, 1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0, 1,1,1,1,1,1,0,0,1,1,1,0,0,1,0,0,0,0, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0, 1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, 1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0, 1,1,1,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0, 1,1,1,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0, 1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ), .Dim = c(35, 18)) ) # initial values (e.g., GS1) list( a = c( 10,10,10,10,10,10, 10,10,10,10,10,10, 10,10,10,10,10,10 ), beta = c( 0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0 ),
# mub = 0, taub = 1, theta = c( -0.4519851, 0.2231436, 0.2231436, -0.6931472, 0.2231436, 0.2231436, 1.2527630, 0.2231436, 0.2231436, 0.4519851, -0.2231436, -0.2231436, 0.2231436, 0.4519851, 0.9555114, 0.2231436, 0.0000000, 0.4519851, 0.0000000, 0.4519851, 0.6931472, 0.6931472, 0.6931472, 1.2527630, -0.9555114, 0.2231436, -0.4519851, 0.2231436, 0.2231436, 0.0000000, 0.2231436, 0.4519851, -0.6931472, 0.6931472, -1.6094379 ) )
Appendix B: Summary of Priors and Specifications
Papers in Tables 4, 5 and 6 are not exhaustive. Estimation techniques in the tables include JBME, MCMC, and MBE. The acronym BME designates Bayes modal estimation, BE designates Bayes estimation (i.e., posterior mean), EAP designates expected a posteriori (i.e., posterior mean via quadratures), and MAP designates maximum a posteriori (i.e., posterior mode with known item parameters). The types of priors can be classified into two; one without any hierarchical structure and the other with some hierarchical structure for which parameters are modeled with hyperpriors and hyperparameters (i.e., Hierarchical). Priors can also be differentiated as ones with exchangeability for which the same prior will be applied to all items in a test or a subtest (i.e., Exchangeable), others with capability of assigning an individual prior on each parameter (i.e., Individual), and also others obtained with information from the current data (i.e., Empirical). It should be noted that in the tables, the names of the distributions might sound the same but could be mathematically, trivially different. Each paper should be consulted and carefully read before employing the priors in one’s research. Also note that several keywords from the computer programs (e.g., SPR, TPR, FLO, AJ, BJ, PA, etc.) are used without any explications.
There are more than six additional, relevant papers that could be included in Tables 4, 5 and 6. The relevant papers are as follows (but without full references): Spiegelhalter et al.’s (1996) “BUGS 0.5 Examples Volume 1”; Johnson and Albert’s (1999) “Ordinal Data Modeling”; Curtis’s (2010) “Journal of Statistical Software, 36”; Nathesan et al.’s (2016) “Frontiers in Psychology, 7”; Luo and Ziao’s (2017) “Educational and Psychological Measurement, Febuary 1”; and Parchev et al.’s (2017) “CRAN Package irtoys”. The six papers mentioned in Tables 4, 5 and 6 are representative ones.
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kim, SH. et al. (2021). Priors in Bayesian Estimation Under the Two-Parameter Logistic Model. In: Wiberg, M., Molenaar, D., González, J., Böckenholt, U., Kim, JS. (eds) Quantitative Psychology. IMPS 2020. Springer Proceedings in Mathematics & Statistics, vol 353. Springer, Cham. https://doi.org/10.1007/978-3-030-74772-5_28
Download citation
DOI: https://doi.org/10.1007/978-3-030-74772-5_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-74771-8
Online ISBN: 978-3-030-74772-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)